Eudes Aymerick, Teixeira Benites Veronica, Wang George, Baidoo Edward E K, Lee Taek Soon, Keasling Jay D, Loqué Dominique
Joint BioEnergy Institute, Emery Station East, 5885 Hollis St, 4th Floor, Emeryville, California, 94608, United States of America; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States of America.
Joint BioEnergy Institute, Emery Station East, 5885 Hollis St, 4th Floor, Emeryville, California, 94608, United States of America; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States of America; Graduate Program, San Francisco State University, San Francisco, California, 94132, United States of America.
PLoS One. 2015 Oct 2;10(10):e0138972. doi: 10.1371/journal.pone.0138972. eCollection 2015.
Biological synthesis of pharmaceuticals and biochemicals offers an environmentally friendly alternative to conventional chemical synthesis. These alternative methods require the design of metabolic pathways and the identification of enzymes exhibiting adequate activities. Cinnamoyl, dihydrocinnamoyl, and benzoyl anthranilates are natural metabolites which possess beneficial activities for human health, and the search is expanding for novel derivatives that might have enhanced biological activity. For example, biosynthesis in Dianthus caryophyllus is catalyzed by hydroxycinnamoyl/benzoyl-CoA:anthranilate N-hydroxycinnamoyl/ benzoyltransferase (HCBT), which couples hydroxycinnamoyl-CoAs and benzoyl-CoAs to anthranilate. We recently demonstrated the potential of using yeast (Saccharomyces cerevisiae) for the biological production of a few cinnamoyl anthranilates by heterologous co-expression of 4-coumaroyl:CoA ligase from Arabidopsis thaliana (4CL5) and HCBT. Here we report that, by exploiting the substrate flexibility of both 4CL5 and HCBT, we achieved rapid biosynthesis of more than 160 cinnamoyl, dihydrocinnamoyl, and benzoyl anthranilates in yeast upon feeding with both natural and non-natural cinnamates, dihydrocinnamates, benzoates, and anthranilates. Our results demonstrate the use of enzyme promiscuity in biological synthesis to achieve high chemical diversity within a defined class of molecules. This work also points to the potential for the combinatorial biosynthesis of diverse and valuable cinnamoylated, dihydrocinnamoylated, and benzoylated products by using the versatile biological enzyme 4CL5 along with characterized cinnamoyl-CoA- and benzoyl-CoA-utilizing transferases.
药物和生物化学物质的生物合成提供了一种比传统化学合成更环保的替代方法。这些替代方法需要设计代谢途径并鉴定具有足够活性的酶。肉桂酰基、二氢肉桂酰基和苯甲酰基邻氨基苯甲酸酯是对人类健康有益的天然代谢产物,人们正在不断寻找可能具有增强生物活性的新型衍生物。例如,石竹中的生物合成由羟基肉桂酰基/苯甲酰基 - CoA:邻氨基苯甲酸 N - 羟基肉桂酰基/苯甲酰基转移酶(HCBT)催化,该酶将羟基肉桂酰基 - CoA 和苯甲酰基 - CoA 与邻氨基苯甲酸偶联。我们最近通过异源共表达拟南芥的 4 - 香豆酰基:CoA 连接酶(4CL5)和 HCBT,证明了利用酵母(酿酒酵母)生物生产几种肉桂酰基邻氨基苯甲酸酯的潜力。在此我们报告,通过利用 4CL5 和 HCBT 的底物灵活性,在用天然和非天然肉桂酸酯、二氢肉桂酸酯、苯甲酸酯和邻氨基苯甲酸酯喂养酵母后,我们在酵母中快速生物合成了超过 160 种肉桂酰基、二氢肉桂酰基和苯甲酰基邻氨基苯甲酸酯。我们的结果证明了在生物合成中利用酶的多效性在一类特定分子中实现高化学多样性。这项工作还指出了通过使用多功能生物酶 4CL5 以及已表征的利用肉桂酰基 - CoA 和苯甲酰基 - CoA 的转移酶,对多种有价值的肉桂酰化、二氢肉桂酰化和苯甲酰化产物进行组合生物合成的潜力。