Manet Sabine, Cuvier Anne-Sophie, Valotteau Claire, Fadda Giulia C, Perez Javier, Karakas Esra, Abel Stéphane, Baccile Niki
Sorbonne Universités , UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, F-75005 Paris, France.
Laboratoire Léon Brillouin, LLB, CEA Saclay, F-91191 CEDEX Gif-sur-Yvette, France.
J Phys Chem B. 2015 Oct 15;119(41):13113-33. doi: 10.1021/acs.jpcb.5b05374. Epub 2015 Oct 2.
The micellar structure of sophorolipids, a glycolipid bolaamphiphile, is analyzed using a combination of small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS), and molecular dynamics (MD) simulations. Numerical modeling of SAXS curves shows that micellar morphology in the noncharged system (pH< 5) is made of prolate ellipsoids of revolution with core-shell morphology. Opposed to most surfactant systems, the hydrophilic shell has a nonhomogeneous distribution of matter: the shell thickness in the axial direction of the ellipsoid is found to be practically zero, while it measures about 12 Å at its cross-section, thus forming a "coffee bean"-like shape. The use of a contrast-matching SANS experiment shows that the hydrophobic component of sophorolipids is actually distributed in a narrow spheroidal region in the micellar core. These data seem to indicate a complex distribution of sophorolipids within the micelle, divided into at least three domains: a pure hydrophobic core, a hydrophilic shell, and a region of less defined composition in the axial direction of the ellipsoid. To account for these results, we make the hypothesis that sophorolipid molecules acquire various configurations within the micelle including bent and linear, crossing the micellar core. These results are confirmed by MD simulations which do show the presence of multiple sophorolipid configurations when passing from spherical to ellipsoidal aggregates. Finally, we also used Rb(+) and Sr(2+) counterions in combination with anomalous SAXS experiments to probe the distribution of the COO(-) group of sophorolipids upon small pH increase (5 < pH < 7), where repulsive intermicellar interactions become important. The poor ASAXS signal shows that the COO(-) groups are rather diffused in the broad hydrophilic shell rather than at the outer micellar/water interface.
槐糖脂是一种糖脂类双亲分子,利用小角X射线散射(SAXS)、小角中子散射(SANS)和分子动力学(MD)模拟相结合的方法对其胶束结构进行了分析。SAXS曲线的数值模拟表明,在非带电体系(pH < 5)中,胶束形态由具有核壳形态的旋转长椭球体构成。与大多数表面活性剂体系不同,亲水壳层的物质分布不均匀:在椭球体轴向方向上的壳层厚度实际上为零,而在其横截面上约为12 Å,从而形成“咖啡豆”状。对比匹配SANS实验的结果表明,槐糖脂的疏水成分实际上分布在胶束核内一个狭窄的球形区域。这些数据似乎表明槐糖脂在胶束内的分布较为复杂,至少分为三个区域:一个纯疏水核、一个亲水壳层以及在椭球体轴向方向上成分不太明确的区域。为了解释这些结果,我们提出一个假设,即槐糖脂分子在胶束内获得了包括弯曲和线性在内的各种构型,穿过胶束核。MD模拟证实了这些结果,当从球形聚集体转变为椭球形聚集体时,确实显示出多种槐糖脂构型的存在。最后,我们还将Rb(+)和Sr(2+)抗衡离子与反常SAXS实验相结合,以探究在pH值小幅升高(5 < pH < 7)时槐糖脂的COO(-)基团的分布情况,此时胶束间的排斥相互作用变得很重要。较差的反常SAXS信号表明,COO(-)基团在宽阔的亲水壳层中分布较为分散,而不是在胶束/水的外界面处。