TAPIR, Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California 91125, USA.
Center for Radiophysics and Space Research, Cornell University, Ithaca, New York 14853, USA.
Phys Rev Lett. 2015 Sep 18;115(12):121102. doi: 10.1103/PhysRevLett.115.121102.
Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic {-2}Y{ℓm} waveform modes resolved by the NR code up to ℓ=8. We compare our surrogate model to effective one body waveforms from 50M_{⊙} to 300M_{⊙} for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).
通过求解爱因斯坦方程来模拟二进制黑洞并合是计算密集型的,需要数天到数月的超级计算时间。使用降阶建模技术,我们构建了一个准确的替代模型,用于评估非旋转二进制黑洞并合的数值相对论(NR)波形,质量比在[1,10]之间,持续时间对应于合并前约 15 个轨道。我们评估了模型的不确定性,并表明我们的建模策略预测了未用于替代模型训练的 NR 波形,其误差与 NR 代码的数值误差几乎一样小。我们的模型包括 NR 代码解析的所有球谐 {-2}Y{ℓm} 波模式,最高达到 ℓ=8。我们将我们的替代模型与高级 LIGO 探测器的 50M_{⊙} 到 300M_{⊙} 的有效单一体波进行比较,发现替代模型始终更忠实(在大多数情况下至少高出一个数量级)。