Suppr超能文献

基于病毒的纳米等离子体结构作为表面增强拉曼生物传感器。

A virus-based nanoplasmonic structure as a surface-enhanced Raman biosensor.

机构信息

Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Avenue SW, Code 6900, Washington DC 20375, USA; Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.

Department of Mathematical Sciences and Computational Material Science Center, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA; Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.

出版信息

Biosens Bioelectron. 2016 Mar 15;77:306-14. doi: 10.1016/j.bios.2015.09.032. Epub 2015 Sep 21.

Abstract

Fabrication of nanoscale structures with localized surface plasmons allows for substantial increase in sensitivity of chem/bio sensors. The main challenge for realizing complex nanoplasmonic structures in solution is the high level of precision required at the nanoscale to position metal nanoparticles in 3D. In this study, we report a virus-like particle (VLP) for building a 3D plasmonic nanostructure in solution in which gold nanoparticles are precisely positioned on the VLP by directed self-assembly techniques. These structures allow for concentration of electromagnetic fields in the desired locations between the gold nanoparticles or "hot spots". We measure the efficiency of the optical field spatial concentration for the first time, which results in a ten-fold enhancement of the capsid Raman peaks. Our experimental results agree with our 3D finite element simulations. Furthermore, we demonstrate as a proof-of-principle that the plasmonic nanostructures can be utilized in DNA detection down to 0.25 ng/μl (lowest concentration tested), while the protein peaks from the interior of the nanoplasmonic structures, potentially, can serve as an internal tracer for the biosensors.

摘要

利用局域表面等离子体来制造纳米结构,可以显著提高化学/生物传感器的灵敏度。在溶液中实现复杂的纳米等离子体结构的主要挑战是,需要在纳米尺度上达到很高的精度,以将金属纳米粒子在 3D 中定位。在这项研究中,我们报告了一种病毒样颗粒(VLP),用于在溶液中构建 3D 等离子体纳米结构,其中通过定向自组装技术将金纳米粒子精确地定位在 VLP 上。这些结构允许在金纳米粒子之间或“热点”处将电磁场集中在所需的位置。我们首次测量了光场空间集中的效率,这导致壳聚糖拉曼峰增强了十倍。我们的实验结果与我们的 3D 有限元模拟结果一致。此外,我们还证明了一个原理验证,即等离子体纳米结构可用于检测低至 0.25 ng/μl 的 DNA(测试的最低浓度),而纳米等离子体结构内部的蛋白质峰可能可作为生物传感器的内部示踪剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验