Griffis Joseph C, Allendorfer Jane B, Szaflarski Jerzy P
Department of Psychology, The University of Alabama at Birmingham, United States.
Department of Neurology, The University of Alabama at Birmingham, United States.
J Neurosci Methods. 2016 Jan 15;257:97-108. doi: 10.1016/j.jneumeth.2015.09.019. Epub 2015 Oct 1.
Manual lesion delineation by an expert is the standard for lesion identification in MRI scans, but it is time-consuming and can introduce subjective bias. Alternative methods often require multi-modal MRI data, user interaction, scans from a control population, and/or arbitrary statistical thresholding.
We present an approach for automatically identifying stroke lesions in individual T1-weighted MRI scans using naïve Bayes classification. Probabilistic tissue segmentation and image algebra were used to create feature maps encoding information about missing and abnormal tissue. Leave-one-case-out training and cross-validation was used to obtain out-of-sample predictions for each of 30 cases with left hemisphere stroke lesions.
Our method correctly predicted lesion locations for 30/30 un-trained cases. Post-processing with smoothing (8mm FWHM) and cluster-extent thresholding (100 voxels) was found to improve performance.
Quantitative evaluations of post-processed out-of-sample predictions on 30 cases revealed high spatial overlap (mean Dice similarity coefficient=0.66) and volume agreement (mean percent volume difference=28.91; Pearson's r=0.97) with manual lesion delineations.
Our automated approach agrees with manual tracing. It provides an alternative to automated methods that require multi-modal MRI data, additional control scans, or user interaction to achieve optimal performance. Our fully trained classifier has applications in neuroimaging and clinical contexts.
由专家手动勾勒病变是磁共振成像(MRI)扫描中病变识别的标准方法,但该方法耗时且可能引入主观偏差。其他方法通常需要多模态MRI数据、用户交互、来自对照人群的扫描以及/或者任意的统计阈值设定。
我们提出一种使用朴素贝叶斯分类法在个体T1加权MRI扫描中自动识别中风病变的方法。概率性组织分割和图像代数运算被用于创建编码有关缺失和异常组织信息的特征图。采用留一法训练和交叉验证来获得30例左半球中风病变患者中每例的样本外预测结果。
我们的方法正确预测了30例未训练病例的病变位置。发现采用8毫米半高宽(FWHM)的平滑处理和100体素的聚类范围阈值设定进行后处理可提高性能。
对30例病例的后处理样本外预测结果进行的定量评估显示,与手动勾勒病变相比,具有较高的空间重叠度(平均骰子相似系数=0.66)和体积一致性(平均体积百分比差异=28.91;皮尔逊相关系数r=0.97)。
我们的自动化方法与手动追踪结果一致。它为那些需要多模态MRI数据、额外的对照扫描或者用户交互以实现最佳性能的自动化方法提供了一种替代方案。我们经过充分训练的分类器在神经成像和临床环境中有应用价值。