Nantong University, Nantong, China.
J Med Internet Res. 2024 Sep 10;26:e59711. doi: 10.2196/59711.
Stroke is a leading cause of death and disability worldwide. Rapid and accurate diagnosis is crucial for minimizing brain damage and optimizing treatment plans.
This review aims to summarize the methods of artificial intelligence (AI)-assisted stroke diagnosis over the past 25 years, providing an overview of performance metrics and algorithm development trends. It also delves into existing issues and future prospects, intending to offer a comprehensive reference for clinical practice.
A total of 50 representative articles published between 1999 and 2024 on using AI technology for stroke prevention and diagnosis were systematically selected and analyzed in detail.
AI-assisted stroke diagnosis has made significant advances in stroke lesion segmentation and classification, stroke risk prediction, and stroke prognosis. Before 2012, research mainly focused on segmentation using traditional thresholding and heuristic techniques. From 2012 to 2016, the focus shifted to machine learning (ML)-based approaches. After 2016, the emphasis moved to deep learning (DL), which brought significant improvements in accuracy. In stroke lesion segmentation and classification as well as stroke risk prediction, DL has shown superiority over ML. In stroke prognosis, both DL and ML have shown good performance.
Over the past 25 years, AI technology has shown promising performance in stroke diagnosis.
脑卒中是全球范围内导致死亡和残疾的主要原因。快速准确的诊断对于最大限度地减少脑损伤和优化治疗方案至关重要。
本综述旨在总结过去 25 年来人工智能(AI)辅助脑卒中诊断的方法,概述性能指标和算法发展趋势。同时探讨现有的问题和未来的前景,为临床实践提供全面的参考。
系统选择并详细分析了 1999 年至 2024 年间发表的 50 篇关于使用 AI 技术进行脑卒中预防和诊断的代表性文章。
AI 辅助脑卒中诊断在脑卒中病灶分割和分类、脑卒中风险预测和脑卒中预后方面取得了显著进展。2012 年以前,研究主要集中在使用传统阈值和启发式技术的分割上。2012 年至 2016 年,研究重点转向基于机器学习(ML)的方法。2016 年后,重点转向深度学习(DL),这在准确性方面带来了显著的提高。在脑卒中病灶分割和分类以及脑卒中风险预测方面,DL 优于 ML。在脑卒中预后方面,DL 和 ML 都表现出了良好的性能。
在过去的 25 年中,人工智能技术在脑卒中诊断方面表现出了有前途的性能。