Suppr超能文献

相似文献

1
Automated segmentation of chronic stroke lesions using LINDA: Lesion identification with neighborhood data analysis.
Hum Brain Mapp. 2016 Apr;37(4):1405-21. doi: 10.1002/hbm.23110. Epub 2016 Jan 12.
2
A comparison of automated lesion segmentation approaches for chronic stroke T1-weighted MRI data.
Hum Brain Mapp. 2019 Nov 1;40(16):4669-4685. doi: 10.1002/hbm.24729. Epub 2019 Jul 26.
3
Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans.
J Neurosci Methods. 2016 Jan 15;257:97-108. doi: 10.1016/j.jneumeth.2015.09.019. Epub 2015 Oct 1.
5
Machine learning identifies stroke features between species.
Theranostics. 2021 Jan 1;11(6):3017-3034. doi: 10.7150/thno.51887. eCollection 2021.
7
Improved accuracy of lesion to symptom mapping with multivariate sparse canonical correlations.
Neuropsychologia. 2018 Jul 1;115:154-166. doi: 10.1016/j.neuropsychologia.2017.08.027. Epub 2017 Sep 5.
8
Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences.
J Neurosci Methods. 2015 Jan 30;240:89-100. doi: 10.1016/j.jneumeth.2014.11.011. Epub 2014 Nov 21.
9
Diffusion-/perfusion-weighted imaging fusion to automatically identify stroke within 4.5 h.
Eur Radiol. 2024 Oct;34(10):6808-6819. doi: 10.1007/s00330-024-10619-5. Epub 2024 Mar 15.
10
Automatic Segmentation and Quantitative Assessment of Stroke Lesions on MR Images.
Diagnostics (Basel). 2022 Aug 24;12(9):2055. doi: 10.3390/diagnostics12092055.

引用本文的文献

1
Competition between tool and hand motion impairs movement planning in limb apraxia.
bioRxiv. 2025 Jun 25:2025.04.07.647589. doi: 10.1101/2025.04.07.647589.
2
Infratentorial white matter integrity as a potential biomarker for post-stroke aphasia.
Brain Commun. 2025 May 6;7(3):fcaf174. doi: 10.1093/braincomms/fcaf174. eCollection 2025.
5
Metric comparison of connectome-based lesion-symptom mapping in post-stroke aphasia.
Brain Commun. 2024 Sep 12;6(5):fcae313. doi: 10.1093/braincomms/fcae313. eCollection 2024.
7
A 25-Year Retrospective of the Use of AI for Diagnosing Acute Stroke: Systematic Review.
J Med Internet Res. 2024 Sep 10;26:e59711. doi: 10.2196/59711.
9
Proposed Protocols for Artificial Intelligence Imaging Database in Acute Stroke Imaging.
Neurointervention. 2023 Nov;18(3):149-158. doi: 10.5469/neuroint.2023.00339. Epub 2023 Oct 17.
10
Using predictive validity to compare associations between brain damage and behavior.
Hum Brain Mapp. 2023 Sep;44(13):4738-4753. doi: 10.1002/hbm.26413. Epub 2023 Jul 7.

本文引用的文献

1
Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke.
Brain. 2016 Jan;139(Pt 1):227-41. doi: 10.1093/brain/awv323. Epub 2015 Oct 31.
2
Fast semi-automated lesion demarcation in stroke.
Neuroimage Clin. 2015 Jul 17;9:69-74. doi: 10.1016/j.nicl.2015.06.013. eCollection 2015.
3
A toolbox for multiple sclerosis lesion segmentation.
Neuroradiology. 2015 Oct;57(10):1031-43. doi: 10.1007/s00234-015-1552-2. Epub 2015 Jul 31.
4
Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images.
Neuroimage Clin. 2015 May 16;8:367-75. doi: 10.1016/j.nicl.2015.05.003. eCollection 2015.
5
The PLORAS Database: A data repository for Predicting Language Outcome and Recovery After Stroke.
Neuroimage. 2016 Jan 1;124(Pt B):1208-1212. doi: 10.1016/j.neuroimage.2015.03.083. Epub 2015 Apr 14.
6
Neural organization of spoken language revealed by lesion-symptom mapping.
Nat Commun. 2015 Apr 16;6:6762. doi: 10.1038/ncomms7762.
7
cocor: a comprehensive solution for the statistical comparison of correlations.
PLoS One. 2015 Apr 2;10(3):e0121945. doi: 10.1371/journal.pone.0121945. eCollection 2015.
8
Spatially regularized mixture model for lesion segmentation with application to stroke patients.
Biostatistics. 2015 Jul;16(3):580-95. doi: 10.1093/biostatistics/kxv004. Epub 2015 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验