Suppr超能文献

在北欧泽西牛群体中纳入不同基因型的雌性群体用于基因组预测。

Including different groups of genotyped females for genomic prediction in a Nordic Jersey population.

作者信息

Gao H, Madsen P, Nielsen U S, Aamand G P, Su G, Byskov K, Jensen J

机构信息

Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830 Tjele, Denmark.

Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830 Tjele, Denmark.

出版信息

J Dairy Sci. 2015 Dec;98(12):9051-9. doi: 10.3168/jds.2015-9947. Epub 2015 Nov 11.

Abstract

Including genotyped females in a reference population (RP) is an obvious way to increase the RP in genomic selection, especially for dairy breeds of limited population size. However, the incorporation of these females must be conducted cautiously because of the potential preferential treatment of the genotyped cows and lower reliabilities of phenotypes compared with the proven pseudo-phenotypes of bulls. Breeding organizations in Denmark, Finland, and Sweden have implemented a female-genotyping project with the possibility of genotyping entire herds using the low-density (LD) chip. In the present study, 5 scenarios for building an RP were investigated in the Nordic Jersey population: (1) bulls only, (2) bulls with females from the LD project, (3) bulls with females from the LD project plus non-LD project females genotyped before their first calving, (4) bulls with females from the LD project plus non-LD project females genotyped after their first calving, and (5) bulls with all genotyped females. The genomically enhanced breeding value (GEBV) was predicted for 8 traits in the Nordic total merit index through a genomic BLUP model using deregressed proof (DRP) as the response variable in all scenarios. In addition, (daughter) yield deviation and raw phenotypic data were studied as response variables for comparison with the DRP, using stature as a model trait. The validation population was formed using a cut-off birth year of 2005 based on the genotyped Nordic Jersey bulls with DRP. The average increment in reliability of the GEBV across the 8 traits investigated was 1.9 to 4.5 percentage points compared with using only bulls in the RP (scenario 1). The addition of all the genotyped females to the RP resulted in the highest gain in reliability (scenario 5), followed by scenario 3, scenario 2, and scenario 4. All scenarios led to inflated GEBV because the regression coefficients are less than 1. However, scenario 2 and scenario 3 led to less bias of genomic predictions than scenario 5, with regression coefficients showing less deviation from scenario 1. For the study on stature, the daughter yield deviation/daughter yield deviation performed slightly better than the DRP as the response variable in the genomic BLUP (GBLUP) model. Therefore, adding unselected females in the RP could significantly improve the reliabilities and tended to reduce the prediction bias compared with adding selectively genotyped females. Although the DRP has performed robustly so far, the use of raw data is recommended with a single-step model as an optimal solution for future genomic evaluations.

摘要

在参考群体(RP)中纳入基因分型的雌性个体是增加基因组选择中参考群体的一种明显方法,特别是对于群体规模有限的奶牛品种。然而,由于基因分型奶牛可能受到的优待以及与已证实的公牛伪表型相比更低的表型可靠性,这些雌性个体的纳入必须谨慎进行。丹麦、芬兰和瑞典的育种组织实施了一个雌性基因分型项目,有可能使用低密度(LD)芯片对整个牛群进行基因分型。在本研究中,在北欧泽西牛群体中研究了构建参考群体的5种方案:(1)仅公牛,(2)公牛加上来自LD项目的雌性个体,(3)公牛加上来自LD项目的雌性个体以及首次产犊前进行基因分型的非LD项目雌性个体,(4)公牛加上来自LD项目的雌性个体以及首次产犊后进行基因分型的非LD项目雌性个体,(5)公牛加上所有基因分型的雌性个体。通过基因组最佳线性无偏预测(GBLUP)模型,以去回归证明(DRP)作为所有方案中的响应变量,预测了北欧总 merit 指数中的8个性状的基因组增强育种值(GEBV)。此外,研究了(女儿)产量偏差和原始表型数据作为响应变量,以与DRP进行比较,使用体高作为模型性状。基于具有DRP的基因分型北欧泽西公牛,以2005年的截止出生年份形成验证群体。与仅在参考群体中使用公牛(方案1)相比,在所研究的8个性状上,GEBV可靠性的平均增幅为1.9至4.5个百分点。将所有基因分型的雌性个体添加到参考群体中导致可靠性增加最多(方案5),其次是方案3、方案2和方案4。所有方案都导致GEBV膨胀,因为回归系数小于1。然而,方案2和方案3导致的基因组预测偏差小于方案5,回归系数显示与方案1的偏差更小。对于体高的研究,在基因组BLUP(GBLUP)模型中,女儿产量偏差/女儿产量偏差作为响应变量的表现略优于DRP。因此,与添加经过选择性基因分型的雌性个体相比,在参考群体中添加未选择的雌性个体可以显著提高可靠性,并倾向于减少预测偏差。尽管到目前为止DRP表现稳健,但建议将原始数据与单步模型一起使用,作为未来基因组评估的最佳解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验