Suppr超能文献

利用扩散管改进二氧化氮空间预测:以苏格兰中西部为例

Improving spatial nitrogen dioxide prediction using diffusion tubes: A case study in West Central Scotland.

作者信息

Pannullo Francesca, Lee Duncan, Waclawski Eugene, Leyland Alastair H

机构信息

MRC∣CSO Social and Public Health Science Unit, University of Glasgow, 200 Renfield Street, Glasgow, G2 3QB, UK.

School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QW, UK.

出版信息

Atmos Environ (1994). 2015 Oct;118:227-235. doi: 10.1016/j.atmosenv.2015.08.009.

Abstract

It has been well documented that air pollution adversely affects health, and epidemiological pollution-health studies utilise pollution data from automatic monitors. However, these automatic monitors are small in number and hence spatially sparse, which does not allow an accurate representation of the spatial variation in pollution concentrations required for these epidemiological health studies. Nitrogen dioxide (NO) diffusion tubes are also used to measure concentrations, and due to their lower cost compared to automatic monitors are much more prevalent. However, even combining both data sets still does not provide sufficient spatial coverage of NO for epidemiological studies, and modelled concentrations on a regular grid from atmospheric dispersion models are also available. This paper proposes the first modelling approach to using all three sources of NO data to make fine scale spatial predictions for use in epidemiological health studies. We propose a geostatistical fusion model that regresses combined NO concentrations from both automatic monitors and diffusion tubes against modelled NO concentrations from an atmospheric dispersion model in order to predict fine scale NO concentrations across our West Central Scotland study region. Our model exhibits a 47% improvement in fine scale spatial prediction of NO compared to using the automatic monitors alone, and we use it to predict NO concentrations across West Central Scotland in 2006.

摘要

空气污染对健康有不利影响,这一点已有充分记录,并且流行病学污染与健康研究使用自动监测器的污染数据。然而,这些自动监测器数量较少,因此在空间上分布稀疏,无法准确呈现这些流行病学健康研究所需的污染浓度空间变化情况。二氧化氮(NO)扩散管也用于测量浓度,并且由于其成本比自动监测器低,因而更为普遍。然而,即便将这两组数据集结合起来,对于流行病学研究而言,仍然无法提供足够的NO空间覆盖范围,大气扩散模型基于规则网格的模拟浓度数据也是可用的。本文提出了第一种建模方法,即利用所有三种NO数据源进行精细尺度的空间预测,以供流行病学健康研究使用。我们提出了一种地质统计融合模型,该模型将自动监测器和扩散管的综合NO浓度与大气扩散模型的模拟NO浓度进行回归分析,以便预测我们苏格兰中西部研究区域的精细尺度NO浓度。与仅使用自动监测器相比,我们的模型在NO精细尺度空间预测方面有47%的提升,并且我们用它来预测2006年苏格兰中西部的NO浓度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5cc/4567077/6d358dd16ac9/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验