Tian Haining
Physical Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden.
ChemSusChem. 2015 Nov;8(22):3746-59. doi: 10.1002/cssc.201500983. Epub 2015 Oct 6.
As one of the components in a tandem photoelectrochemical cell for solar-fuel production, the photocathode carries out the reduction reaction to convert solar light and the corresponding substrate (e.g., proton and CO2) into target fuels. Immobilizing molecular catalysts onto the photocathode is a promising strategy to enhance the interfacial electron/hole-transfer process and to improve the stability of the catalysts. Furthermore, the molecular catalysts are beneficial in improving the selectivity of the reduction reaction, particularly for CO2 reduction. On the photocathode, the binding mode of the catalysts and the arrangement between the photosensitizer and the catalyst also play crucial roles in the performance and stability of the final device. How to firmly and effectively immobilize the catalyst on the photoelectrode is now becoming a scientific question. Recent publications on molecular catalyst immobilized photocathodes are therefore surveyed.
作为用于太阳能燃料生产的串联光电化学电池的组件之一,光阴极进行还原反应,将太阳光和相应的底物(例如质子和二氧化碳)转化为目标燃料。将分子催化剂固定在光阴极上是增强界面电子/空穴转移过程并提高催化剂稳定性的一种有前途的策略。此外,分子催化剂有利于提高还原反应的选择性,特别是对于二氧化碳还原。在光阴极上,催化剂的结合模式以及光敏剂与催化剂之间的排列对最终器件的性能和稳定性也起着至关重要的作用。如何将催化剂牢固且有效地固定在光电极上正成为一个科学问题。因此,本文对近期关于分子催化剂固定化光阴极的出版物进行了综述。