Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195-1640, USA
Philos Trans A Math Phys Eng Sci. 2015 Nov 13;373(2054). doi: 10.1098/rsta.2014.0415.
Cloud feedbacks are a leading source of uncertainty in the climate sensitivity simulated by global climate models (GCMs). Low-latitude boundary-layer and cumulus cloud regimes are particularly problematic, because they are sustained by tight interactions between clouds and unresolved turbulent circulations. Turbulence-resolving models better simulate such cloud regimes and support the GCM consensus that they contribute to positive global cloud feedbacks. Large-eddy simulations using sub-100 m grid spacings over small computational domains elucidate marine boundary-layer cloud response to greenhouse warming. Four observationally supported mechanisms contribute: 'thermodynamic' cloudiness reduction from warming of the atmosphere-ocean column, 'radiative' cloudiness reduction from CO2- and H2O-induced increase in atmospheric emissivity aloft, 'stability-induced' cloud increase from increased lower tropospheric stratification, and 'dynamical' cloudiness increase from reduced subsidence. The cloudiness reduction mechanisms typically dominate, giving positive shortwave cloud feedback. Cloud-resolving models with horizontal grid spacings of a few kilometres illuminate how cumulonimbus cloud systems affect climate feedbacks. Limited-area simulations and superparameterized GCMs show upward shift and slight reduction of cloud cover in a warmer climate, implying positive cloud feedbacks. A global cloud-resolving model suggests tropical cirrus increases in a warmer climate, producing positive longwave cloud feedback, but results are sensitive to subgrid turbulence and ice microphysics schemes.
云反馈是全球气候模式(GCMs)模拟气候敏感性的主要不确定性来源。低纬度边界层和积云云系特别成问题,因为它们是由云和未解析的湍流传导之间的紧密相互作用维持的。解决湍流的模式更好地模拟了这些云系,并支持 GCM 的共识,即它们有助于正的全球云反馈。使用 100m 以下的网格间距在小的计算域上进行的大涡模拟阐明了海洋边界层云对温室变暖的响应。有四个得到观测支持的机制:来自大气-海洋柱变暖的“热力学”云量减少、来自 CO2 和 H2O 引起的高层大气发射率增加的“辐射”云量减少、来自低层对流层分层增加的“稳定性诱导”云量增加,以及来自下沉减少的“动力”云量增加。通常情况下,云量减少机制占主导地位,给出了正的短波云反馈。水平网格间距为几公里的云分辨模式阐明了积雨云系统如何影响气候反馈。有限区域模拟和超级参数化 GCM 表明,在更温暖的气候中,云覆盖范围向上移动且略有减少,这意味着存在正的云反馈。一个全球云分辨模式表明,在更温暖的气候中,热带卷云增加,产生正的长波云反馈,但结果对次网格湍流和冰微观物理方案敏感。