Bayliss Sam L, Greenham Neil C, Friend Richard H, Bouchiat Hélène, Chepelianskii Alexei D
Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK.
LPS, Université Paris-Sud, CNRS, UMR 8502, F-91405 Orsay, France.
Nat Commun. 2015 Oct 6;6:8534. doi: 10.1038/ncomms9534.
Despite residing in an energetically and structurally disordered landscape, the spin degree of freedom remains a robust quantity in organic semiconductor materials due to the weak coupling of spin and orbital states. This enforces spin-selectivity in recombination processes which plays a crucial role in optoelectronic devices, for example, in the spin-dependent recombination of weakly bound electron-hole pairs, or charge-transfer states, which form in a photovoltaic blend. Here, we implement a detection scheme to probe the spin-selective recombination of these states through changes in their dielectric polarizability under magnetic resonance. Using this technique, we access a regime in which the usual mixing of spin-singlet and spin-triplet states due to hyperfine fields is suppressed by microwave driving. We present a quantitative model for this behaviour which allows us to estimate the spin-dependent recombination rate, and draw parallels with the Majorana-Brossel resonances observed in atomic physics experiments.
尽管处于能量和结构无序的状态,但由于自旋与轨道态的弱耦合,自旋自由度在有机半导体材料中仍是一个稳健的量。这在复合过程中强制实现了自旋选择性,而这在光电器件中起着关键作用,例如在弱束缚电子 - 空穴对或电荷转移态的自旋相关复合中,这些态在光伏混合体系中形成。在此,我们实施了一种检测方案,通过磁共振下其介电极化率的变化来探测这些态的自旋选择性复合。利用该技术,我们进入了一个由于微波驱动抑制了超精细场导致的自旋单重态和自旋三重态通常混合的 regime(此处regime未明确给出中文释义,可保留英文)。我们给出了这种行为的定量模型,该模型使我们能够估计自旋相关的复合率,并与原子物理实验中观察到的马约拉纳 - 布罗塞尔共振进行类比。