Suppr超能文献

整体式 OLED-微丝器件用于超强度磁共振激发。

Monolithic OLED-Microwire Devices for Ultrastrong Magnetic Resonant Excitation.

机构信息

Department of Physics and Astronomy, University of Utah , 115 S, 1400 E, Salt Lake City, Utah 84112, United States.

Institut für Experimentelle und Angewandte Physik, Universität Regensburg , Universitätsstrasse 31, 93040 Regensburg, Germany.

出版信息

Nano Lett. 2017 Aug 9;17(8):4648-4653. doi: 10.1021/acs.nanolett.7b01135. Epub 2017 Jul 21.

Abstract

Organic light-emitting diodes (OLEDs) make highly sensitive probes to test magnetic resonance phenomena under unconventional conditions since spin precession controls singlet-triplet transitions of electron-hole pairs, which in turn give rise to distinct recombination currents in conductivity. Electron paramagnetic resonance can therefore be detected in the absence of spin polarization. We exploit this characteristic to explore the exotic regime of ultrastrong light-matter coupling, where the Rabi frequency of a charge carrier spin is of the order of the transition frequency of the two-level system. To reach this domain, we have to lower the Zeeman splitting of the spin states, defined by the static magnetic field B, and raise the strength of the oscillatory driving field of the resonance, B. This is achieved by shrinking the OLED and bringing the source of resonant radio frequency (RF) radiation as close as possible to the organic semiconductor in a monolithic device structure, which incorporates an OLED fabricated directly on top of an RF microwire within one monolithic thin-film device structure. With an RF driving power in the milliwatt range applied to the microwire, the regime of bleaching and inversion of the magnetic resonance signal is reached due to the onset of the spin-Dicke effect. In this example of ultrastrong light-matter coupling, the individual resonant spin transitions of electron-hole pairs become indistinguishable with respect to the driving field, and superradiance of the magnetic dipole transitions sets in.

摘要

有机发光二极管 (OLED) 可作为高度灵敏的探针,用于在非常规条件下测试磁共振现象,因为自旋进动控制着电子-空穴对的单重态-三重态跃迁,这反过来又导致电导率中出现独特的复合电流。因此,在没有自旋极化的情况下也可以检测到电子顺磁共振。我们利用这一特性来探索超强度光物质耦合的奇特领域,其中电荷载流子自旋的拉比频率与两能级系统的跃迁频率相当。为了达到这个领域,我们必须降低由静态磁场 B 定义的自旋态的塞曼分裂,并提高共振的振荡驱动场 B 的强度。这是通过缩小 OLED 并将共振射频 (RF) 辐射源尽可能靠近有机半导体来实现的,在单片器件结构中,直接在 RF 微线上制造 OLED。通过在微线上施加几毫瓦范围的 RF 驱动功率,由于自旋 - 狄克效应的出现,达到了磁共振信号的漂白和反转的状态。在这个超强度光物质耦合的例子中,相对于驱动场,电子-空穴对的单个共振自旋跃迁变得不可区分,并且磁偶极跃迁的超辐射开始出现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验