Qu H, Donkin S S, Ajuwon K M
J Anim Sci. 2015 Aug;93(8):3832-42. doi: 10.2527/jas.2015-9074.
Heat stress (HS) results from excessive heat load on animals such that all adaptive mechanisms used to dissipate the heat do not return the body to normal body temperature. In pigs, HS results in increased fat deposition compared with pair-fed animals in a thermoneutral environment. Although there is evidence that HS increases activity of lipoprotein lipase (LPL) in adipose tissue of heat stressed pigs, the fundamental causes of the increased adiposity are still unknown. It remains unclear whether HS directly alters metabolism in adipocytes. Therefore, to understand the mechanism of HS effects on porcine adipocytes, we used an in vitro adipocyte differentiation model to characterize cellular responses that occur during differentiation of pig adipocytes. Preadipocytes (stromovascular cells) were differentiated for 9 d at a normal (37°C) or HS (41.5°C) temperature under 5% CO. Expressions of HS genes such as heat shock proteins (HSP; HSP27, HSP60, HSP70, and HSP90), adipogenic markers peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα), fatty acid synthase (FAS), adipocyte protein 2 (aP2), fatty acid translocase 36 (CD36), fatty acid transport protein 4 (FATP4), fatty acid transport protein 6 (FATP6), LPL, glucose transporter protein type 4 (GLUT4), phosphoenolpyruvate carboxykinase 1 (PCK1 or PEPCK-C), and glycerol kinase (GK) and adipokines (adiponectin and leptin) were determined by real-time-PCR and immunoblotting or ELISA. Cellular triglyceride (TAG) and ATP concentrations were also determined. As expected, HS increased ( < 0.05) the expressions of HSP genes. There was no HS treatment effect on the level of PPARγ, although C/EBPα was induced ( < 0.05) in HS. So it remains unclear whether HS affects adipocyte differentiation. However, HS leads to increased expressions of genes involved in fatty acid uptake and TAG synthesis (FAS, aP2, CD36, FATP4, FATP6, LPL, GLUT4, PCK1, and GK). This is supported by increased cellular TAG under HS. Therefore, HS promotes increased adipocyte TAG storage, perhaps through upregulation of genes involved in fatty acid uptake and TAG synthesis.
热应激(HS)是由于动物承受过多的热负荷,以至于所有用于散热的适应性机制都无法使身体恢复到正常体温。与在热中性环境中配对饲养的动物相比,猪的热应激会导致脂肪沉积增加。尽管有证据表明热应激会增加热应激猪脂肪组织中脂蛋白脂肪酶(LPL)的活性,但肥胖增加的根本原因仍然未知。热应激是否直接改变脂肪细胞的代谢仍不清楚。因此,为了了解热应激对猪脂肪细胞的影响机制,我们使用体外脂肪细胞分化模型来表征猪脂肪细胞分化过程中发生的细胞反应。前脂肪细胞(血管基质细胞)在5%二氧化碳条件下于正常(37°C)或热应激(41.5°C)温度下分化9天。通过实时PCR、免疫印迹或酶联免疫吸附测定法测定热休克蛋白(HSP;HSP27、HSP60、HSP70和HSP90)等热应激基因、脂肪生成标志物过氧化物酶体增殖物激活受体γ(PPARγ)、CCAAT/增强子结合蛋白α(C/EBPα)、脂肪酸合酶(FAS)、脂肪细胞蛋白2(aP2)、脂肪酸转运蛋白36(CD36)、脂肪酸转运蛋白4(FATP4)、脂肪酸转运蛋白6(FATP6)、LPL、葡萄糖转运蛋白4型(GLUT4)磷酸烯醇丙酮酸羧激酶1(PCK1或PEPCK-C)和甘油激酶(GK)以及脂肪因子(脂联素和瘦素)的表达。还测定了细胞甘油三酯(TAG)和ATP浓度。正如预期的那样,热应激增加了(<0.05)HSP基因的表达。热应激处理对PPARγ水平没有影响,尽管热应激诱导了C/EBPα(<0.05)。因此,热应激是否影响脂肪细胞分化仍不清楚。然而,热应激导致参与脂肪酸摄取和TAG合成的基因(FAS、aP2、CD36、FATP4、FATP6、LPL、GLUT4、PCK1和GK)表达增加。热应激下细胞TAG增加支持了这一点。因此,热应激可能通过上调参与脂肪酸摄取和TAG合成的基因来促进脂肪细胞TAG储存增加。