Suppr超能文献

基于重复结构的视觉位置识别。

Visual place recognition with repetitive structures.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2015 Nov;37(11):2346-59. doi: 10.1109/TPAMI.2015.2409868.

Abstract

Repeated structures such as building facades, fences or road markings often represent a significant challenge for place recognition. Repeated structures are notoriously hard for establishing correspondences using multi-view geometry. They violate the feature independence assumed in the bag-of-visual-words representation which often leads to over-counting evidence and significant degradation of retrieval performance. In this work we show that repeated structures are not a nuisance but, when appropriately represented, they form an important distinguishing feature for many places. We describe a representation of repeated structures suitable for scalable retrieval and geometric verification. The retrieval is based on robust detection of repeated image structures and a suitable modification of weights in the bag-of-visual-word model. We also demonstrate that the explicit detection of repeated patterns is beneficial for robust visual word matching for geometric verification. Place recognition results are shown on datasets of street-level imagery from Pittsburgh and San Francisco demonstrating significant gains in recognition performance compared to the standard bag-of-visual-words baseline as well as the more recently proposed burstiness weighting and Fisher vector encoding.

摘要

重复结构,如建筑立面、围栏或道路标记,通常对位置识别构成重大挑战。众所周知,使用多视图几何来建立重复结构的对应关系非常困难。它们违反了在视觉词袋表示中假设的特征独立性,这通常会导致证据过度计数,并显著降低检索性能。在这项工作中,我们表明重复结构不是一种麻烦,而是在适当表示时,它们成为许多位置的重要区别特征。我们描述了一种适用于可扩展检索和几何验证的重复结构表示。检索基于对重复图像结构的稳健检测以及在视觉词袋模型中对权重进行适当修改。我们还证明,对于用于几何验证的稳健视觉词匹配,显式检测重复模式是有益的。我们在匹兹堡和旧金山的街景图像数据集上展示了位置识别结果,与标准的视觉词袋基线以及最近提出的突发权重和 Fisher 向量编码相比,识别性能有了显著提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验