Suppr超能文献

切换耦合神经网络的非光滑有限时间同步。

Nonsmooth Finite-Time Synchronization of Switched Coupled Neural Networks.

出版信息

IEEE Trans Cybern. 2016 Oct;46(10):2360-2371. doi: 10.1109/TCYB.2015.2477366. Epub 2015 Sep 28.

Abstract

This paper is concerned with the finite-time synchronization (FTS) issue of switched coupled neural networks with discontinuous or continuous activations. Based on the framework of nonsmooth analysis, some discontinuous or continuous controllers are designed to force the coupled networks to synchronize to an isolated neural network. Some sufficient conditions are derived to ensure the FTS by utilizing the well-known finite-time stability theorem for nonlinear systems. Compared with the previous literatures, such synchronization objective will be realized when the activations and the controllers are both discontinuous. The obtained results in this paper include and extend the earlier works on the synchronization issue of coupled networks with Lipschitz continuous conditions. Moreover, an upper bound of the settling time for synchronization is estimated. Finally, numerical simulations are given to demonstrate the effectiveness of the theoretical results.

摘要

这篇论文研究了具有不连续或连续激活函数的切换耦合神经网络的有限时间同步(FTS)问题。基于非光滑分析的框架,设计了一些不连续或连续的控制器,以使耦合网络同步到孤立的神经网络。利用非线性系统的著名有限时间稳定性定理,推导出了一些充分条件,以确保 FTS。与以前的文献相比,当激活函数和控制器都是不连续时,将实现这种同步目标。本文的研究结果包括并扩展了以前关于具有 Lipschitz 连续条件的耦合网络同步问题的研究工作。此外,还估计了同步的调整时间的上界。最后,给出了数值模拟结果以验证理论结果的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验