Suppr超能文献

时滞情况下生物神经元同步的非线性最优控制

Nonlinear optimal control for the synchronization of biological neurons under time-delays.

作者信息

Rigatos G, Wira P, Melkikh A

机构信息

1Unit of Industrial Automation, Industrial Systems Institute, 26504 Rion, Patras, Greece.

Laboratoire MIPS, Université d' Haute Alsace, 68093 Mulhouse, France.

出版信息

Cogn Neurodyn. 2019 Feb;13(1):89-103. doi: 10.1007/s11571-018-9510-4. Epub 2018 Oct 15.

Abstract

The article proposes a nonlinear optimal control method for synchronization of neurons that exhibit nonlinear dynamics and are subject to time-delays. The model of the Hindmarsh-Rose (HR) neurons is used as a case study. The dynamic model of the coupled HR neurons undergoes approximate linearization around a temporary operating point which is recomputed at each iteration of the control method. The linearization procedure relies on Taylor series expansion of the model and on computation of the associated Jacobian matrices. For the approximately linearized model of the coupled HR neurons an H-infinity controller is designed. For the selection of the controller's feedback gain an algebraic Riccati equation is repetitively solved at each time-step of the control algorithm. The stability properties of the control loop are proven through Lyapunov analysis. First, it is shown that the H-infinity tracking performance criterion is satisfied. Moreover, it is proven that the control loop is globally asymptotically stable.

摘要

本文提出了一种用于具有非线性动力学且存在时延的神经元同步的非线性最优控制方法。以Hindmarsh-Rose(HR)神经元模型为例进行研究。耦合HR神经元的动态模型在一个临时工作点附近进行近似线性化,该临时工作点在控制方法的每次迭代时重新计算。线性化过程依赖于模型的泰勒级数展开以及相关雅可比矩阵的计算。对于耦合HR神经元的近似线性化模型,设计了一个H无穷控制器。对于控制器反馈增益的选择,在控制算法的每个时间步重复求解代数黎卡提方程。通过李雅普诺夫分析证明了控制回路的稳定性。首先,证明了满足H无穷跟踪性能准则。此外,还证明了控制回路是全局渐近稳定的。

相似文献

2
Nonlinear optimal control for the multi-variable tumor-growth dynamics.多变量肿瘤生长动力学的非线性最优控制
Comput Methods Biomech Biomed Engin. 2025 Mar;28(4):529-557. doi: 10.1080/10255842.2023.2297660. Epub 2024 Jan 2.
5
Dynamical Analysis of the Hindmarsh-Rose Neuron With Time Delays.时滞 Hindmarsh-Rose 神经元的动力学分析。
IEEE Trans Neural Netw Learn Syst. 2017 Aug;28(8):1953-1958. doi: 10.1109/TNNLS.2016.2557845. Epub 2016 May 25.
8
Robust feedback linearization for nonlinear processes control.鲁棒反馈线性化在非线性过程控制中的应用。
ISA Trans. 2018 Mar;74:155-164. doi: 10.1016/j.isatra.2018.01.017. Epub 2018 Feb 3.

本文引用的文献

1
Adaptive Antisynchronization of Multilayer Reaction-Diffusion Neural Networks.多层反应扩散神经网络的自适应反同步。
IEEE Trans Neural Netw Learn Syst. 2018 Apr;29(4):807-818. doi: 10.1109/TNNLS.2017.2647811. Epub 2017 Jan 24.
4
Dynamical Analysis of the Hindmarsh-Rose Neuron With Time Delays.时滞 Hindmarsh-Rose 神经元的动力学分析。
IEEE Trans Neural Netw Learn Syst. 2017 Aug;28(8):1953-1958. doi: 10.1109/TNNLS.2016.2557845. Epub 2016 May 25.
5
Nonsmooth Finite-Time Synchronization of Switched Coupled Neural Networks.切换耦合神经网络的非光滑有限时间同步。
IEEE Trans Cybern. 2016 Oct;46(10):2360-2371. doi: 10.1109/TCYB.2015.2477366. Epub 2015 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验