Sawers R Gary, Clark David P
EcoSal Plus. 2004 Dec;1(1). doi: 10.1128/ecosalplus.3.5.3.
Pyruvate and acetyl-CoA form the backbone of central metabolism. The nonoxidative cleavage of pyruvate to acetyl-CoA and formate by the glycyl radical enzyme pyruvate formate lyase is one of the signature reactions of mixed-acid fermentation in enterobacteria. Under these conditions, formic acid accounts for up to one-third of the carbon derived from glucose. The further metabolism of acetyl-CoA to acetate via acetyl-phosphate catalyzed by phosphotransacetylase and acetate kinase is an exemplar of substrate-level phosphorylation. Acetyl-CoA can also be used as an acceptor of the reducing equivalents generated during glycolysis, whereby ethanol is formed by the polymeric acetaldehyde/alcohol dehydrogenase (AdhE) enzyme. The metabolism of acetyl-CoA via either the acetate or the ethanol branches is governed by the cellular demand for ATP and the necessity to reoxidize NADH. Consequently, in the absence of an electron acceptor mutants lacking either branch of acetyl-CoA metabolism fail to cleave pyruvate, despite the presence of PFL, and instead reduce it to D-lactate by the D-lactate dehydrogenase. The conversion of PFL to the active, radical-bearing species is controlled by a radical-SAM enzyme, PFL-activase. All of these reactions are regulated in response to the prevalent cellular NADH:NAD+ ratio. In contrast to Escherichia coli and Salmonella species, some genera of enterobacteria, e.g., Klebsiella and Enterobacter, produce the more neutral product 2,3-butanediol and considerable amounts of CO2 as fermentation products. In these bacteria, two molecules of pyruvate are converted to α-acetolactate (AL) by α-acetolactate synthase (ALS). AL is then decarboxylated and subsequently reduced to the product 2,3-butandiol.
丙酮酸和乙酰辅酶A构成了中心代谢的主干。由甘氨酰自由基酶丙酮酸甲酸裂解酶将丙酮酸非氧化裂解为乙酰辅酶A和甲酸,是肠杆菌属混合酸发酵的标志性反应之一。在这些条件下,甲酸占源自葡萄糖的碳的三分之一。乙酰辅酶A通过磷酸转乙酰酶和乙酸激酶催化进一步代谢为乙酰磷酸,进而生成乙酸,这是底物水平磷酸化的一个范例。乙酰辅酶A也可用作糖酵解过程中产生的还原当量的受体,通过聚合乙醛/乙醇脱氢酶(AdhE)形成乙醇。乙酰辅酶A通过乙酸或乙醇分支的代谢受细胞对ATP的需求以及重新氧化NADH的必要性的控制。因此,在缺乏电子受体的情况下,缺乏乙酰辅酶A代谢任何一个分支的突变体尽管存在丙酮酸甲酸裂解酶,也无法裂解丙酮酸,而是通过D - 乳酸脱氢酶将其还原为D - 乳酸。丙酮酸甲酸裂解酶向有活性的含自由基物种的转化由一种自由基SAM酶——丙酮酸甲酸裂解酶激活酶控制。所有这些反应都根据普遍存在的细胞NADH:NAD⁺比值进行调节。与大肠杆菌和沙门氏菌属不同,一些肠杆菌属,例如克雷伯氏菌属和肠杆菌属,产生更中性的产物2,3 - 丁二醇和大量的CO₂作为发酵产物。在这些细菌中,两分子丙酮酸通过α - 乙酰乳酸合酶(ALS)转化为α - 乙酰乳酸(AL)。然后AL脱羧,随后还原为产物2,3 - 丁二醇。