Suppr超能文献

厌氧甲酸和氢代谢

Anaerobic Formate and Hydrogen Metabolism.

作者信息

Sawers R Gary, Blokesch Melanie, Böck August

出版信息

EcoSal Plus. 2004 Dec;1(1). doi: 10.1128/ecosalplus.3.5.4.

Abstract

During fermentative growth, Escherichia coli degrades carbohydrates via the glycolytic route into two pyruvate molecules. Pyruvate can be reduced to lactate or nonoxidatively cleaved by pyruvate formate lyase into acetyl-coenzyme A (acetyl-CoA) and formate. Acetyl-CoA can be utilized for energy conservation in the phosphotransacetylase (PTA) and acetate kinase (ACK) reaction sequence or can serve as an acceptor for reducing equivalents gathered during pyruvate formation, through the action of alcohol dehydrogenase (AdhE). Formic acid is strongly acidic and has a redox potential of -420 mV under standard conditions and therefore can be classified as a high-energy compound. Its disproportionation into CO2 and molecular hydrogen (Em,7 -420 mV) via the formate hydrogenlyase (FHL) system is therefore of high selective value. The FHL reaction involves the participation of at least seven proteins, most of which are metalloenzymes, with requirements for iron, molybdenum, nickel, or selenium. Complex auxiliary systems incorporate these metals. Reutilization of the hydrogen evolved required the evolution of H2 oxidation systems, which couple the oxidation process to an appropriate energy-conserving terminal reductase. E. coli has two hydrogen-oxidizing enzyme systems. Finally, fermentation is the "last resort" of energy metabolism, since it gives the minimal energy yield when compared with respiratory processes. Consequently, fermentation is used only when external electron acceptors are absent. This has necessitated the establishment of regulatory cascades, which ensure that the metabolic capability is appropriately adjusted to the physiological condition. Here we review the genetics, biochemistry, and regulation of hydrogen metabolism and its hydrogenase maturation system.

摘要

在发酵生长过程中,大肠杆菌通过糖酵解途径将碳水化合物降解为两个丙酮酸分子。丙酮酸可被还原为乳酸,或由丙酮酸甲酸裂解酶非氧化裂解为乙酰辅酶A(乙酰 - CoA)和甲酸。乙酰辅酶A可用于磷酸转乙酰酶(PTA)和乙酸激酶(ACK)反应序列中的能量守恒,或者通过乙醇脱氢酶(AdhE)的作用,作为丙酮酸形成过程中收集的还原当量的受体。甲酸是强酸性的,在标准条件下具有 - 420 mV的氧化还原电位,因此可归类为高能化合物。因此,其通过甲酸氢化酶(FHL)系统歧化为二氧化碳和分子氢(Em,7 - 420 mV)具有很高的选择价值。FHL反应至少涉及七种蛋白质的参与,其中大多数是金属酶,对铁、钼、镍或硒有需求。复杂的辅助系统整合了这些金属。所产生氢气的再利用需要进化出H2氧化系统,该系统将氧化过程与适当的能量守恒末端还原酶偶联。大肠杆菌有两种氢氧化酶系统。最后,发酵是能量代谢的“最后手段”,因为与呼吸过程相比,它产生的能量产量最低。因此,只有在没有外部电子受体时才使用发酵。这就需要建立调节级联反应,以确保代谢能力能够根据生理状况进行适当调整。在这里,我们综述了氢代谢及其氢化酶成熟系统的遗传学、生物化学和调控。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验