Holzmann Christian, Kilch Tatiana, Kappel Sven, Dörr Kathrin, Jung Volker, Stöckle Michael, Bogeski Ivan, Peinelt Christine
Biophysics, Center for Integrated Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany.
Biophysics, Center for Integrated Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany; Center of Human and Molecular Biology, Saarland University, Homburg, Germany.
Biophys J. 2015 Oct 6;109(7):1410-9. doi: 10.1016/j.bpj.2015.08.006.
In prostate cancer, reactive oxygen species (ROS) are elevated and Ca(2+) signaling is impaired. Thus, several novel therapeutic strategies have been developed to target altered ROS and Ca(2+) signaling pathways in prostate cancer. Here, we investigate alterations of intracellular Ca(2+) and inhibition of cell viability caused by ROS in primary human prostate epithelial cells (hPECs) from healthy tissue and prostate cancer cell lines (LNCaP, DU145, and PC3). In hPECs, LNCaP and DU145 H2O2 induces an initial Ca(2+) increase, which in prostate cancer cells is blocked at high concentrations of H2O2. Upon depletion of intracellular Ca(2+) stores, store-operated Ca(2+) entry (SOCE) is activated. SOCE channels can be formed by hexameric Orai1 channels; however, Orai1 can form heteromultimers with its homolog, Orai3. Since the redox sensor of Orai1 (Cys-195) is absent in Orai3, the Orai1/Orai3 ratio in T cells determines the redox sensitivity of SOCE and cell viability. In prostate cancer cells, SOCE is blocked at lower concentrations of H2O2 compared with hPECs. An analysis of data from hPECs, LNCaP, DU145, and PC3, as well as previously published data from naive and effector TH cells, demonstrates a strong correlation between the Orai1/Orai3 ratio and the SOCE redox sensitivity and cell viability. Therefore, our data support the concept that store-operated Ca(2+) channels in hPECs and prostate cancer cells are heteromeric Orai1/Orai3 channels with an increased Orai1/Orai3 ratio in cells derived from prostate cancer tumors. In addition, ROS-induced alterations in Ca(2+) signaling in prostate cancer cells may contribute to the higher sensitivity of these cells to ROS.
在前列腺癌中,活性氧(ROS)水平升高且钙(Ca2+)信号传导受损。因此,已经开发了几种新的治疗策略来靶向前列腺癌中改变的ROS和Ca2+信号通路。在此,我们研究了来自健康组织的原代人前列腺上皮细胞(hPEC)和前列腺癌细胞系(LNCaP、DU145和PC3)中细胞内Ca2+的变化以及ROS对细胞活力的抑制作用。在hPEC、LNCaP和DU145中,过氧化氢(H2O2)诱导初始Ca2+增加,而在前列腺癌细胞中,高浓度H2O2会阻断这种增加。细胞内Ca2+储存耗尽后,储存操纵性钙内流(SOCE)被激活。SOCE通道可由六聚体Orai1通道形成;然而,Orai1可与其同源物Orai3形成异源多聚体。由于Orai3中不存在Orai1的氧化还原传感器(半胱氨酸-195),T细胞中的Orai1/Orai3比例决定了SOCE的氧化还原敏感性和细胞活力。与hPEC相比,在较低浓度的H2O2作用下,前列腺癌细胞中的SOCE被阻断。对来自hPEC、LNCaP、DU145和PC3的数据以及先前发表的来自初始和效应T细胞的数据进行分析,结果表明Orai1/Orai3比例与SOCE氧化还原敏感性和细胞活力之间存在很强的相关性。因此,我们的数据支持这样一种概念,即hPEC和前列腺癌细胞中的储存操纵性钙通道是异源多聚体Orai1/Orai3通道,在源自前列腺癌肿瘤的细胞中Orai1/Orai3比例增加。此外,ROS诱导的前列腺癌细胞中Ca2+信号传导的改变可能导致这些细胞对ROS具有更高的敏感性。