Suppr超能文献

预测模型验证与评估在肥胖及营养研究中的重要性。

The importance of prediction model validation and assessment in obesity and nutrition research.

作者信息

Ivanescu A E, Li P, George B, Brown A W, Keith S W, Raju D, Allison D B

机构信息

Department of Mathematical Sciences, Montclair State University, Montclair, NJ, USA.

Office of Energetics and Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.

出版信息

Int J Obes (Lond). 2016 Jun;40(6):887-94. doi: 10.1038/ijo.2015.214. Epub 2015 Oct 9.

Abstract

Deriving statistical models to predict one variable from one or more other variables, or predictive modeling, is an important activity in obesity and nutrition research. To determine the quality of the model, it is necessary to quantify and report the predictive validity of the derived models. Conducting validation of the predictive measures provides essential information to the research community about the model. Unfortunately, many articles fail to account for the nearly inevitable reduction in predictive ability that occurs when a model derived on one data set is applied to a new data set. Under some circumstances, the predictive validity can be reduced to nearly zero. In this overview, we explain why reductions in predictive validity occur, define the metrics commonly used to estimate the predictive validity of a model (for example, coefficient of determination (R(2)), mean squared error, sensitivity, specificity, receiver operating characteristic and concordance index) and describe methods to estimate the predictive validity (for example, cross-validation, bootstrap, and adjusted and shrunken R(2)). We emphasize that methods for estimating the expected reduction in predictive ability of a model in new samples are available and this expected reduction should always be reported when new predictive models are introduced.

摘要

推导统计模型以从一个或多个其他变量预测一个变量,即预测建模,是肥胖与营养研究中的一项重要活动。为了确定模型的质量,有必要对所推导模型的预测有效性进行量化并报告。对预测指标进行验证可为研究界提供有关该模型的重要信息。不幸的是,许多文章未能考虑到当基于一个数据集推导的模型应用于新数据集时,预测能力几乎不可避免地会下降。在某些情况下,预测有效性可能会降至几乎为零。在本综述中,我们解释了预测有效性降低的原因,定义了常用于估计模型预测有效性的指标(例如,决定系数(R²)、均方误差、灵敏度、特异性、受试者工作特征曲线和一致性指数),并描述了估计预测有效性的方法(例如,交叉验证、自助法以及调整后的和收缩后的R²)。我们强调,有方法可用于估计新样本中模型预测能力的预期下降,并且在引入新的预测模型时应始终报告这种预期下降。

相似文献

1
The importance of prediction model validation and assessment in obesity and nutrition research.
Int J Obes (Lond). 2016 Jun;40(6):887-94. doi: 10.1038/ijo.2015.214. Epub 2015 Oct 9.
5
Assessing dietary variety in children: development and validation of a predictive equation.
J Am Diet Assoc. 2009 Apr;109(4):641-7. doi: 10.1016/j.jada.2008.12.012.
9
Bias in error estimation when using cross-validation for model selection.
BMC Bioinformatics. 2006 Feb 23;7:91. doi: 10.1186/1471-2105-7-91.
10
A screening model for oral cancer using risk scores: development and validation.
Community Dent Oral Epidemiol. 2016 Feb;44(1):76-84. doi: 10.1111/cdoe.12192. Epub 2015 Aug 26.

引用本文的文献

1
Prognostic Models of Mortality Following First-Ever Acute Ischemic Stroke: A Population-Based Retrospective Cohort Study.
Health Sci Rep. 2025 Feb 13;8(2):e70445. doi: 10.1002/hsr2.70445. eCollection 2025 Feb.
2
Patient perspective on predictive models in healthcare: translation into practice, ethical implications and limitations?
BMJ Health Care Inform. 2025 Jan 16;32(1):e101153. doi: 10.1136/bmjhci-2024-101153.
3
Derivation of a risk-adjusted model to predict antibiotic prescribing among hospitalists in an academic healthcare network.
Antimicrob Steward Healthc Epidemiol. 2024 Oct 7;4(1):e163. doi: 10.1017/ash.2024.422. eCollection 2024.
4
5
Publicly available datasets of breast histopathology H&E whole-slide images: A scoping review.
J Pathol Inform. 2024 Feb 1;15:100363. doi: 10.1016/j.jpi.2024.100363. eCollection 2024 Dec.
8
CARRoT: R-package for predictive modelling by means of regression, adjusted for multiple regularisation methods.
PLoS One. 2023 Oct 12;18(10):e0292597. doi: 10.1371/journal.pone.0292597. eCollection 2023.
9
Leakage and the reproducibility crisis in machine-learning-based science.
Patterns (N Y). 2023 Aug 4;4(9):100804. doi: 10.1016/j.patter.2023.100804. eCollection 2023 Sep 8.
10
Prediction-oriented prognostic biomarker discovery with survival machine learning methods.
NAR Genom Bioinform. 2023 Jun 16;5(2):lqad055. doi: 10.1093/nargab/lqad055. eCollection 2023 Jun.

本文引用的文献

1
The precision--recall curve overcame the optimism of the receiver operating characteristic curve in rare diseases.
J Clin Epidemiol. 2015 Aug;68(8):855-9. doi: 10.1016/j.jclinepi.2015.02.010. Epub 2015 Feb 28.
3
Identification of novel clinical factors associated with hepatic fat accumulation in extreme obesity.
J Obes. 2014;2014:368210. doi: 10.1155/2014/368210. Epub 2014 Dec 24.
5
Type 2 Diabetes Remission After Gastric Bypass: What Is the Best Prediction Tool for Clinicians?
Obes Surg. 2015 Jul;25(7):1128-32. doi: 10.1007/s11695-014-1511-8.
7
Prevention and management of type 2 diabetes: dietary components and nutritional strategies.
Lancet. 2014 Jun 7;383(9933):1999-2007. doi: 10.1016/S0140-6736(14)60613-9.
8
An obesity genetic risk score predicts risk of insulin resistance among Chinese children.
Endocrine. 2014 Dec;47(3):825-32. doi: 10.1007/s12020-014-0217-y. Epub 2014 Mar 12.
9
SVM versus MAP on accelerometer data to distinguish among locomotor activities executed at different speeds.
Comput Math Methods Med. 2013;2013:343084. doi: 10.1155/2013/343084. Epub 2013 Nov 27.
10
Predictive equations for central obesity via anthropometrics, stereovision imaging and MRI in adults.
Obesity (Silver Spring). 2014 Mar;22(3):852-62. doi: 10.1002/oby.20489. Epub 2013 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验