Basser Peter J, Pajevic Sinisa
STBB/LIMB/NICHD, National Institutes of Health, Bldg. 13, Rm. 3W 16, 13 South Drive, Bethesda, MD 20892-5772, USA.
IEEE Trans Med Imaging. 2003 Jul;22(7):785-94. doi: 10.1109/TMI.2003.815059.
Diffusion tensor magnetic resonance imaging (DT-MRI) provides a statistical estimate of a symmetric, second-order diffusion tensor of water, D, in each voxel within an imaging volume. We propose a new normal distribution, p(D) alpha exp(-1/2 D: A: D), which describes the variability of D in an ideal DT-MRI experiment. The scalar invariant, D : A : D, is the contraction of a positive definite symmetric, fourth-order precision tensor, A, and D. A correspondence is established between D: A: D and the elastic strain energy density function in continuum mechanics--specifically between D and the second-order infinitesimal strain tensor, and between A and the fourth-order tensor of elastic coefficients. We show that A can be further classified according to different classical elastic symmetries (i.e., isotropy, transverse isotropy, orthotropy, planar symmetry, and anisotropy). When A is an isotropic fourth-order tensor, we derive an explicit analytic expression for p(D), and for the distribution of the three eigenvalues of D, p(gamma1, gamma2, gamma3), which are confirmed by Monte Carlo simulations. We show how A can be estimated from either real or synthetic DT-MRI data for any given experimental design. Here we propose a new criterion for an optimal experimental design: that A be an isotropic fourth-order tensor. This condition ensures that the statistical properties of D (and quantities derived from it) are rotationally invariant. We also investigate the degree of isotropy of several DT-MRI experimental designs. Finally, we show that the univariate and multivariate distributions are special cases of the more general tensor-variate normal distribution, and suggest how to generalize p(D) to treat normal random tensor variables that are of third- (or higher) order. We expect that this new distribution, p(D), should be useful in feature extraction; in developing a hypothesis testing framework for segmenting and classifying noisy, discrete tensor data; and in designing experiments to measure tensor quantities.
扩散张量磁共振成像(DT - MRI)可对成像体积内每个体素中的水的对称二阶扩散张量(D)进行统计估计。我们提出了一种新的正态分布,(p(D) \propto \exp(-\frac{1}{2} D : A : D)),它描述了理想DT - MRI实验中(D)的变异性。标量不变量(D : A : D)是正定对称四阶精度张量(A)与(D)的缩并。在(D : A : D)与连续介质力学中的弹性应变能密度函数之间建立了对应关系——具体而言,是(D)与二阶无穷小应变张量之间,以及(A)与弹性系数四阶张量之间。我们表明,(A)可根据不同的经典弹性对称性(即各向同性、横向各向同性、正交各向异性、平面对称性和各向异性)进一步分类。当(A)是各向同性四阶张量时,我们推导出了(p(D))以及(D)的三个特征值的分布(p(\gamma_1, \gamma_2, \gamma_3))的显式解析表达式,这些表达式通过蒙特卡罗模拟得到了证实。我们展示了如何针对任何给定的实验设计,从真实或合成的DT - MRI数据中估计(A)。在此,我们提出了一种优化实验设计的新准则:即(A)为各向同性四阶张量。此条件确保了(D)(以及由其导出的量)的统计特性是旋转不变的。我们还研究了几种DT - MRI实验设计的各向同性程度。最后,我们表明单变量和多变量分布是更一般的张量变量正态分布的特殊情况,并提出了如何推广(p(D))以处理三阶(或更高阶)正态随机张量变量的方法。我们期望这种新的分布(p(D))在特征提取、为分割和分类有噪声的离散张量数据开发假设检验框架以及设计测量张量量的实验中有用。