Suppr超能文献

多核糖体上的暂停:为翻译控制中的延伸让路

Pausing on Polyribosomes: Make Way for Elongation in Translational Control.

作者信息

Richter Joel D, Coller Jeff

机构信息

Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.

Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA.

出版信息

Cell. 2015 Oct 8;163(2):292-300. doi: 10.1016/j.cell.2015.09.041.

Abstract

Among the three phases of mRNA translation-initiation, elongation, and termination-initiation has traditionally been considered to be rate limiting and thus the focus of regulation. Emerging evidence, however, demonstrates that control of ribosome translocation (polypeptide elongation) can also be regulatory and indeed exerts a profound influence on development, neurologic disease, and cell stress. The correspondence of mRNA codon usage and the relative abundance of their cognate tRNAs is equally important for mediating the rate of polypeptide elongation. Here, we discuss recent results showing that ribosome pausing is a widely used mechanism for controlling translation and, as a result, biological transitions in health and disease.

摘要

在mRNA翻译的三个阶段(起始、延伸和终止)中,传统上认为起始是限速步骤,因此也是调控的重点。然而,新出现的证据表明,核糖体易位(多肽延伸)的控制也具有调控作用,并且确实对发育、神经疾病和细胞应激产生深远影响。mRNA密码子使用情况与其同源tRNA相对丰度之间的对应关系,对于介导多肽延伸速率同样重要。在这里,我们讨论了最近的研究结果,这些结果表明核糖体暂停是一种广泛用于控制翻译的机制,因此也是健康和疾病中生物转变的机制。

相似文献

1
Pausing on Polyribosomes: Make Way for Elongation in Translational Control.
Cell. 2015 Oct 8;163(2):292-300. doi: 10.1016/j.cell.2015.09.041.
2
The ribosome in action: Tuning of translational efficiency and protein folding.
Protein Sci. 2016 Aug;25(8):1390-406. doi: 10.1002/pro.2950. Epub 2016 Jun 8.
3
Controlling translation elongation efficiency: tRNA regulation of ribosome flux on the mRNA.
Biochem Soc Trans. 2014 Feb;42(1):160-5. doi: 10.1042/BST20130132.
4
Codon usage and gene expression.
Nucleic Acids Res. 1986 Apr 11;14(7):3075-87. doi: 10.1093/nar/14.7.3075.
5
Widespread regulation of translation by elongation pausing in heat shock.
Mol Cell. 2013 Feb 7;49(3):439-52. doi: 10.1016/j.molcel.2012.11.028. Epub 2013 Jan 3.
6
Insights into the mechanisms of eukaryotic translation gained with ribosome profiling.
Nucleic Acids Res. 2017 Jan 25;45(2):513-526. doi: 10.1093/nar/gkw1190. Epub 2016 Dec 6.
7
Ribosome structure and dynamics during translocation and termination.
Annu Rev Biophys. 2010;39:227-44. doi: 10.1146/annurev.biophys.37.032807.125954.
8

引用本文的文献

2
Ribosomal A-site interactions with near-cognate tRNAs drive stop codon readthrough.
Nat Struct Mol Biol. 2025 Apr;32(4):662-674. doi: 10.1038/s41594-024-01450-z. Epub 2025 Jan 13.
3
Dysfunctional β-cell longevity in diabetes relies on energy conservation and positive epistasis.
Life Sci Alliance. 2024 Sep 23;7(12). doi: 10.26508/lsa.202402743. Print 2024 Dec.
4
Patterns of protein synthesis in the budding yeast cell cycle: variable or constant?
Microb Cell. 2024 Aug 20;11:321-327. doi: 10.15698/mic2024.08.835. eCollection 2024.
6
Dengue virus preferentially uses human and mosquito non-optimal codons.
Mol Syst Biol. 2024 Oct;20(10):1085-1108. doi: 10.1038/s44320-024-00052-7. Epub 2024 Jul 22.
7
Human DDX6 regulates translation and decay of inefficiently translated mRNAs.
Elife. 2024 Jul 11;13:RP92426. doi: 10.7554/eLife.92426.
8
Perturbation of METTL1-mediated tRNA N- methylguanosine modification induces senescence and aging.
Nat Commun. 2024 Jul 8;15(1):5713. doi: 10.1038/s41467-024-49796-8.

本文引用的文献

1
A novel multiple-stage antimalarial agent that inhibits protein synthesis.
Nature. 2015 Jun 18;522(7556):315-20. doi: 10.1038/nature14451.
2
A Cdh1-APC/FMRP Ubiquitin Signaling Link Drives mGluR-Dependent Synaptic Plasticity in the Mammalian Brain.
Neuron. 2015 May 6;86(3):726-39. doi: 10.1016/j.neuron.2015.03.049. Epub 2015 Apr 23.
3
Codon optimality is a major determinant of mRNA stability.
Cell. 2015 Mar 12;160(6):1111-24. doi: 10.1016/j.cell.2015.02.029.
4
Ribosomes slide on lysine-encoding homopolymeric A stretches.
Elife. 2015 Feb 19;4:e05534. doi: 10.7554/eLife.05534.
5
Targeting the eIF4F translation initiation complex: a critical nexus for cancer development.
Cancer Res. 2015 Jan 15;75(2):250-63. doi: 10.1158/0008-5472.CAN-14-2789.
6
A nutrient-driven tRNA modification alters translational fidelity and genome-wide protein coding across an animal genus.
PLoS Biol. 2014 Dec 9;12(12):e1002015. doi: 10.1371/journal.pbio.1002015. eCollection 2014 Dec.
7
mTORC1-mediated translational elongation limits intestinal tumour initiation and growth.
Nature. 2015 Jan 22;517(7535):497-500. doi: 10.1038/nature13896. Epub 2014 Nov 5.
8
Structural basis for interaction of a cotranslational chaperone with the eukaryotic ribosome.
Nat Struct Mol Biol. 2014 Dec;21(12):1042-6. doi: 10.1038/nsmb.2908. Epub 2014 Nov 2.
9
A dual program for translation regulation in cellular proliferation and differentiation.
Cell. 2014 Sep 11;158(6):1281-1292. doi: 10.1016/j.cell.2014.08.011.
10
High-resolution mapping of transcriptional dynamics across tissue development reveals a stable mRNA-tRNA interface.
Genome Res. 2014 Nov;24(11):1797-807. doi: 10.1101/gr.176784.114. Epub 2014 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验