Fedeli Chiara, Segat Daniela, Tavano Regina, Bubacco Luigi, De Franceschi Giorgia, de Laureto Patrizia Polverino, Lubian Elisa, Selvestrel Francesco, Mancin Fabrizio, Papini Emanuele
Centro di Ricerca Interdipartimentale per le Biotecnologie Innovative, Università di Padova, via U. Bassi 58/B, I-35131, Padova, Italy.
Dipartimento di Biologia, Università di Padova, via U. Bassi 58/B, I-35131, Padova, Italy.
Nanoscale. 2015 Nov 14;7(42):17710-28. doi: 10.1039/c5nr05290d.
A coat of strongly-bound host proteins, or hard corona, may influence the biological and pharmacological features of nanotheranostics by altering their cell-interaction selectivity and macrophage clearance. With the goal of identifying specific corona-effectors, we investigated how the capture of amorphous silica nanoparticles (SiO2-NPs; Ø = 26 nm; zeta potential = -18.3 mV) by human lymphocytes, monocytes and macrophages is modulated by the prominent proteins of their plasma corona. LC MS/MS analysis, western blotting and quantitative SDS-PAGE densitometry show that Histidine Rich Glycoprotein (HRG) is the most abundant component of the SiO2-NP hard corona in excess plasma from humans (HP) and mice (MP), together with minor amounts of the homologous Kininogen-1 (Kin-1), while it is remarkably absent in their Foetal Calf Serum (FCS)-derived corona. HRG binds with high affinity to SiO2-NPs (HRG Kd ∼2 nM) and competes with other plasma proteins for the NP surface, so forming a stable and quite homogeneous corona inhibiting nanoparticles binding to the macrophage membrane and their subsequent uptake. Conversely, in the case of lymphocytes and monocytes not only HRG but also several common plasma proteins can interchange in this inhibitory activity. The depletion of HRG and Kin-1 from HP or their plasma exhaustion by increasing NP concentration (>40 μg ml(-1) in 10% HP) lead to a heterogeneous hard corona, mostly formed by fibrinogen (Fibr), HDLs, LDLs, IgGs, Kallikrein and several minor components, allowing nanoparticle binding to macrophages. Consistently, the FCS-derived SiO2-NP hard corona, mainly formed by hemoglobin, α2 macroglobulin and HDLs but lacking HRG, permits nanoparticle uptake by macrophages. Moreover, purified HRG competes with FCS proteins for the NP surface, inhibiting their recruitment in the corona and blocking NP macrophage capture. HRG, the main component of the plasma-derived SiO2-NPs' hard corona, has antiopsonin characteristics and uniquely confers to these particles the ability to evade macrophage capture.
一层紧密结合的宿主蛋白涂层,即硬冠层,可能会通过改变纳米诊疗剂的细胞相互作用选择性和巨噬细胞清除率来影响其生物学和药理学特性。为了识别特定的冠层效应物,我们研究了人淋巴细胞、单核细胞和巨噬细胞对无定形二氧化硅纳米颗粒(SiO2-NPs;直径 = 26 nm;zeta电位 = -18.3 mV)的捕获是如何受到其血浆冠层中主要蛋白质的调节的。液相色谱串联质谱分析、蛋白质印迹和定量SDS-PAGE光密度测定表明,富含组氨酸糖蛋白(HRG)是来自人类(HP)和小鼠(MP)的过量血浆中SiO2-NP硬冠层中最丰富的成分,同时还有少量同源激肽原-1(Kin-1),而在胎牛血清(FCS)衍生的冠层中则明显不存在。HRG以高亲和力与SiO2-NPs结合(HRG的解离常数Kd约为2 nM),并与其他血浆蛋白竞争NP表面,从而形成稳定且相当均匀的冠层,抑制纳米颗粒与巨噬细胞膜的结合及其随后的摄取。相反,对于淋巴细胞和单核细胞,不仅HRG,而且几种常见的血浆蛋白都可以在这种抑制活性中相互替代。从HP中耗尽HRG和Kin-1,或者通过增加NP浓度(在10% HP中>40 μg ml(-1))使血浆耗尽,会导致形成异质硬冠层,主要由纤维蛋白原(Fibr)、高密度脂蛋白(HDLs)、低密度脂蛋白(LDLs)、免疫球蛋白(IgGs)、激肽释放酶和几种次要成分组成,从而使纳米颗粒能够与巨噬细胞结合。一致地,FCS衍生的SiO2-NP硬冠层主要由血红蛋白、α2巨球蛋白和HDLs组成,但缺乏HRG,允许纳米颗粒被巨噬细胞摄取。此外,纯化的HRG与FCS蛋白竞争NP表面,抑制它们在冠层中的募集并阻止NP被巨噬细胞捕获。HRG是血浆来源的SiO2-NPs硬冠层的主要成分,具有抗调理素特性,并独特地赋予这些颗粒逃避巨噬细胞捕获的能力。