Agüera Antonio, Collard Marie, Jossart Quentin, Moreau Camille, Danis Bruno
Laboratoire de Biologie Marine CP160/15, Universite Libre de Bruxelles, F. D. Roosevelt, 50, 1050 Brussels, Belgium.
PLoS One. 2015 Oct 9;10(10):e0140078. doi: 10.1371/journal.pone.0140078. eCollection 2015.
Marine organisms in Antarctica are adapted to an extreme ecosystem including extremely stable temperatures and strong seasonality due to changes in day length. It is now largely accepted that Southern Ocean organisms are particularly vulnerable to global warming with some regions already being challenged by a rapid increase of temperature. Climate change affects both the physical and biotic components of marine ecosystems and will have an impact on the distribution and population dynamics of Antarctic marine organisms. To predict and assess the effect of climate change on marine ecosystems a more comprehensive knowledge of the life history and physiology of key species is urgently needed. In this study we estimate the Dynamic Energy Budget (DEB) model parameters for key benthic Antarctic species the sea star Odontaster validus using available information from literature and experiments. The DEB theory is unique in capturing the metabolic processes of an organism through its entire life cycle as a function of temperature and food availability. The DEB model allows for the inclusion of the different life history stages, and thus, becomes a tool that can be used to model lifetime feeding, growth, reproduction, and their responses to changes in biotic and abiotic conditions. The DEB model presented here includes the estimation of reproduction handling rules for the development of simultaneous oocyte cohorts within the gonad. Additionally it links the DEB model reserves to the pyloric caeca an organ whose function has long been ascribed to energy storage. Model parameters described a slowed down metabolism of long living animals that mature slowly. O. validus has a large reserve that-matching low maintenance costs- allow withstanding long periods of starvation. Gonad development is continuous and individual cohorts developed within the gonads grow in biomass following a power function of the age of the cohort. The DEB model developed here for O. validus allowed us to increase our knowledge on the ecophysiology of this species, providing new insights on the role of food availability and temperature on its life cycle and reproduction strategy.
南极洲的海洋生物适应了极端的生态系统,包括由于日照长度变化而形成的极其稳定的温度和强烈的季节性。现在人们普遍认为,南大洋生物特别容易受到全球变暖的影响,一些地区已经受到气温快速上升的挑战。气候变化影响海洋生态系统的物理和生物成分,并将对南极海洋生物的分布和种群动态产生影响。为了预测和评估气候变化对海洋生态系统的影响,迫切需要更全面地了解关键物种的生活史和生理学。在本研究中,我们利用文献和实验中的现有信息,估计了南极关键底栖物种——海星Odontaster validus的动态能量收支(DEB)模型参数。DEB理论的独特之处在于,它能将生物体在其整个生命周期中的代谢过程作为温度和食物可利用性的函数进行描述。DEB模型允许纳入不同的生活史阶段,因此成为一种可用于模拟终生摄食、生长、繁殖及其对生物和非生物条件变化的响应的工具。这里提出的DEB模型包括对性腺内同步卵母细胞群体发育的繁殖处理规则的估计。此外,它还将DEB模型储备与幽门盲囊联系起来,幽门盲囊的功能长期以来一直被认为是能量储存。模型参数描述了长寿且成熟缓慢的动物新陈代谢减缓的情况。O. validus有大量储备,这与低维持成本相匹配,使其能够承受长时间的饥饿。性腺发育是连续的,性腺内发育的单个群体的生物量随群体年龄的幂函数增长。这里为O. validus开发的DEB模型使我们能够增加对该物种生态生理学的了解,为食物可利用性和温度在其生命周期和繁殖策略中的作用提供了新的见解。