Gardiner Bruce S, Wong Kelvin K L, Joldes Grand R, Rich Addison J, Tan Chin Wee, Burgess Antony W, Smith David W
School of Engineering and Information Technology, Murdoch University, Perth, Australia.
Engineering Computational Biology, School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia.
PLoS Comput Biol. 2015 Oct 9;11(10):e1004544. doi: 10.1371/journal.pcbi.1004544. eCollection 2015 Oct.
This paper presents a framework for modelling biological tissues based on discrete particles. Cell components (e.g. cell membranes, cell cytoskeleton, cell nucleus) and extracellular matrix (e.g. collagen) are represented using collections of particles. Simple particle to particle interaction laws are used to simulate and control complex physical interaction types (e.g. cell-cell adhesion via cadherins, integrin basement membrane attachment, cytoskeletal mechanical properties). Particles may be given the capacity to change their properties and behaviours in response to changes in the cellular microenvironment (e.g., in response to cell-cell signalling or mechanical loadings). Each particle is in effect an 'agent', meaning that the agent can sense local environmental information and respond according to pre-determined or stochastic events. The behaviour of the proposed framework is exemplified through several biological problems of ongoing interest. These examples illustrate how the modelling framework allows enormous flexibility for representing the mechanical behaviour of different tissues, and we argue this is a more intuitive approach than perhaps offered by traditional continuum methods. Because of this flexibility, we believe the discrete modelling framework provides an avenue for biologists and bioengineers to explore the behaviour of tissue systems in a computational laboratory.
本文提出了一种基于离散粒子对生物组织进行建模的框架。细胞成分(如细胞膜、细胞骨架、细胞核)和细胞外基质(如胶原蛋白)用粒子集合来表示。使用简单的粒子间相互作用定律来模拟和控制复杂的物理相互作用类型(如通过钙黏着蛋白实现的细胞间黏附、整合素与基底膜的附着、细胞骨架的力学特性)。粒子可以被赋予根据细胞微环境的变化(如响应细胞间信号传导或机械负荷)改变其特性和行为的能力。每个粒子实际上都是一个“智能体”,这意味着该智能体能够感知局部环境信息并根据预先确定的或随机的事件做出响应。通过几个当前备受关注的生物学问题对所提出框架的行为进行了例证。这些例子说明了该建模框架在表示不同组织力学行为方面具有极大的灵活性,并且我们认为这是一种比传统连续介质方法可能提供的方法更直观的途径。由于这种灵活性,我们相信离散建模框架为生物学家和生物工程师在计算实验室中探索组织系统的行为提供了一条途径。