Lakatos Mathias, Matys Sabine, Raff Johannes, Pompe Wolfgang
Dresden University of Technology, Institute of Materials Science, Max Bergmann Center of Biomaterials, Budapester Strasse 27, 01069 Dresden, Germany.
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Halsbruecker Strasse 34, 09599 Freiberg, Germany.
Talanta. 2015 Nov 1;144:241-6. doi: 10.1016/j.talanta.2015.05.082. Epub 2015 Jun 3.
Herein, we present simple and rapid colorimetric and UV/VIS spectroscopic methods for detecting anionic arsenic (V) complexes in aqueous media. The methods exploit the aggregation of S-layer-functionalized spherical gold nanoparticles of sizes between 20 and 50 nm in the presence of arsenic species. The gold nanoparticles were functionalized with oligomers of the S-layer protein of Lysinibacillus sphaericus JG-A12. The aggregation of the nanoparticles results in a color change from burgundy-red for widely dispersed nanoparticles to blue for aggregated nanoparticles. A detailed signal analysis was achieved by measuring the shift of the particle plasmon resonance signal with UV/VIS spectroscopy. To further improve signal sensitivity, the influence of larger nanoparticles was tested. In the case of 50 nm gold nanoparticles, a concentration of the anionic arsenic (V) complex lower than 24 ppb was detectable.
在此,我们展示了用于检测水介质中阴离子砷(V)配合物的简单快速的比色法和紫外/可见光谱法。这些方法利用了在砷物种存在下,尺寸在20至50纳米之间的S层功能化球形金纳米颗粒的聚集。金纳米颗粒用球形赖氨酸芽孢杆菌JG-A12的S层蛋白的低聚物进行功能化。纳米颗粒的聚集导致颜色从广泛分散的纳米颗粒的酒红色变为聚集纳米颗粒的蓝色。通过用紫外/可见光谱测量颗粒等离子体共振信号的位移实现了详细的信号分析。为了进一步提高信号灵敏度,测试了较大纳米颗粒的影响。对于50纳米的金纳米颗粒,可检测到低于24 ppb的阴离子砷(V)配合物浓度。
Colloids Surf B Biointerfaces. 2019-7-31
Talanta. 2013-10-23
ACS Appl Mater Interfaces. 2016-1-13
Nanomicro Lett. 2021-6-12
Biosensors (Basel). 2018-4-11