文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于金属纳米粒子的砷比色检测研究进展

Recent Advances in Colorimetric Detection of Arsenic Using Metal-Based Nanoparticles.

作者信息

Kolya Haradhan, Hashitsume Kazuharu, Kang Chun-Won

机构信息

Department of Housing Environmental Design and Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, Jeonju 54896, Jeonbuk, Korea.

Graduate Schools of Education, Shimane University 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan.

出版信息

Toxics. 2021 Jun 17;9(6):143. doi: 10.3390/toxics9060143.


DOI:10.3390/toxics9060143
PMID:34204502
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8235315/
Abstract

Nowadays, arsenic (III) contamination of drinking water is a global issue. Laboratory and instrument-based techniques are typically used to detect arsenic in water, with an accuracy of 1 ppb. However, such detection methods require a laboratory-based environment, skilled labor, and additional costs for setup. As a result, several metal-based nanoparticles have been studied to prepare a cost-effective and straightforward detector for arsenic (III) ions. Among the developed strategies, colorimetric detection is one of the simplest methods to detect arsenic (III) in water. Several portable digital detection technologies make nanoparticle-based colorimetric detectors useful for on-site arsenic detection. The present review showcases several metal-based nanoparticles that can detect arsenic (III) colorimetrically at a concentration of ~0.12 ppb or lower in water. A literature survey suggests that biomolecule-based metal nanoparticles could serve as low-cost, facile, susceptible, and eco-friendly alternatives for detecting arsenic (III). This review also describes future directions, perspectives and challenges in developing this alternative technology, which will help us reach a new milestone in designing an effective arsenic detector for commercial use.

摘要

如今,饮用水中的砷(III)污染是一个全球性问题。基于实验室和仪器的技术通常用于检测水中的砷,精度为1 ppb。然而,这种检测方法需要基于实验室的环境、熟练劳动力以及额外的设置成本。因此,人们研究了几种基于金属的纳米颗粒,以制备一种经济高效且简单的砷(III)离子探测器。在已开发的策略中,比色检测是检测水中砷(III)的最简单方法之一。几种便携式数字检测技术使基于纳米颗粒的比色探测器可用于现场砷检测。本综述展示了几种基于金属的纳米颗粒,它们能够在水中以约0.12 ppb或更低的浓度比色检测砷(III)。文献调查表明,基于生物分子的金属纳米颗粒可作为检测砷(III)的低成本、简便、灵敏且环保的替代品。本综述还描述了开发这种替代技术的未来方向、前景和挑战,这将有助于我们在设计用于商业用途的有效砷探测器方面达到一个新的里程碑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8994/8235315/b887a58d48fb/toxics-09-00143-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8994/8235315/5b398d01aadf/toxics-09-00143-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8994/8235315/6eefc2a73a76/toxics-09-00143-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8994/8235315/cd32b0852eb6/toxics-09-00143-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8994/8235315/ee1fe49d72ac/toxics-09-00143-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8994/8235315/2e10231fc41b/toxics-09-00143-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8994/8235315/226498f55555/toxics-09-00143-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8994/8235315/c8ce4e0ba335/toxics-09-00143-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8994/8235315/835a2f63a3d1/toxics-09-00143-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8994/8235315/b887a58d48fb/toxics-09-00143-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8994/8235315/5b398d01aadf/toxics-09-00143-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8994/8235315/6eefc2a73a76/toxics-09-00143-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8994/8235315/cd32b0852eb6/toxics-09-00143-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8994/8235315/ee1fe49d72ac/toxics-09-00143-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8994/8235315/2e10231fc41b/toxics-09-00143-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8994/8235315/226498f55555/toxics-09-00143-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8994/8235315/c8ce4e0ba335/toxics-09-00143-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8994/8235315/835a2f63a3d1/toxics-09-00143-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8994/8235315/b887a58d48fb/toxics-09-00143-g009.jpg

相似文献

[1]
Recent Advances in Colorimetric Detection of Arsenic Using Metal-Based Nanoparticles.

Toxics. 2021-6-17

[2]
Advances in Nanomaterials and Colorimetric Detection of Arsenic in Water: Review and Future Perspectives.

Sensors (Basel). 2024-6-15

[3]
SPE based soil processing and aptasensor integrated detection system for rapid on site screening of arsenic contamination in soil.

Ecotoxicol Environ Saf. 2020-4-4

[4]
Nanoparticles assembled by aptamers and crystal violet for arsenic(III) detection in aqueous solution based on a resonance Rayleigh scattering spectral assay.

Nanoscale. 2012-10-4

[5]
In situ formation of silver nanoparticles via hydride generation: A miniaturized/portable visual colorimetric system for arsenic detection in environmental water samples.

Anal Chim Acta. 2022-2-1

[6]
Ultrasensitive aptamer biosensor for arsenic(III) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles.

Analyst. 2012-7-30

[7]
Detection of arsenic(III) through pulsed laser-induced desorption/ionization of gold nanoparticles on cellulose membranes.

Anal Chem. 2014-3-18

[8]
Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(III) in aqueous solution.

Chem Commun (Camb). 2012-3-28

[9]
Colorimetric As (V) detection based on S-layer functionalized gold nanoparticles.

Talanta. 2015-11-1

[10]
Miniaturized Sample Preparation and Rapid Detection of Arsenite in Contaminated Soil Using a Smartphone.

Sensors (Basel). 2018-3-4

引用本文的文献

[1]
Development and characterization of gold nanoparticle-based colorimetric sensing assay functionalized with L-cysteine for the detection of calcium carbide in ripened mango and banana fruits.

Heliyon. 2025-2-15

[2]
Ultrasensitive and selective colorimetric and smartphone-based detection of arsenic ions in aqueous solution using alliin-chitosan-AgNPs.

RSC Adv. 2024-7-18

[3]
Identification of taurine biomarker in human biofluids using plasmonic patterns of silver nanostructure.

RSC Adv. 2024-6-26

[4]
Advances in Nanomaterials and Colorimetric Detection of Arsenic in Water: Review and Future Perspectives.

Sensors (Basel). 2024-6-15

[5]
Toxicity of Metal Oxides, Dyes, and Dissolved Organic Matter in Water: Implications for the Environment and Human Health.

Toxics. 2024-1-28

[6]
Determination of Arsenic Content in Water Using a Silver Coordination Polymer.

ACS Environ Au. 2022-3-16

本文引用的文献

[1]
Label-free colorimetric assay for arsenic(III) determination based on a truncated short ssDNA and gold nanoparticles.

Mikrochim Acta. 2021-1-11

[2]
Recent development of chromogenic and fluorogenic chemosensors for the detection of arsenic species: Environmental and biological applications.

Spectrochim Acta A Mol Biomol Spectrosc. 2021-2-5

[3]
Adsorption enhanced the oxidase-mimicking catalytic activity of octahedral-shape MnO nanoparticles as a novel colorimetric chemosensor for ultrasensitive and selective detection of arsenic.

J Colloid Interface Sci. 2021-2-15

[4]
Portable and rapid arsenic speciation in synthetic and natural waters by an As(V)-selective chemisorbent, validated against anodic stripping voltammetry.

Water Res. 2020-2-28

[5]
Introducing Frontal Chromatography-Inductively Coupled Plasma-Mass Spectrometry as a Fast Method for Speciation Analysis: The Case of Inorganic Arsenic.

Anal Chem. 2019-10-14

[6]
Arsenic Speciation on Silver Nanofilms by Surface-Enhanced Raman Spectroscopy.

Anal Chem. 2019-6-14

[7]
Seasonal variation of arsenic and antimony in surface waters of small subarctic lakes impacted by legacy mining pollution near Yellowknife, NT, Canada.

Sci Total Environ. 2019-9-20

[8]
Thyroid hormones and neurobehavioral functions among adolescents chronically exposed to groundwater with geogenic arsenic in Bangladesh.

Sci Total Environ. 2019-4-29

[9]
Core-shell FeO@Au nanocomposite as dual-functional optical probe and potential removal system for arsenic (III) from Water.

J Hazard Mater. 2019-4-29

[10]
Colorimetric Assay Conversion to Highly Sensitive Electrochemical Assay for Bimodal Detection of Arsenate Based on Cobalt Oxyhydroxide Nanozyme via Arsenate Absorption.

Anal Chem. 2019-5-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索