Jakubík Jan, El-Fakahany Esam E, Doležal Vladimír
Institute of Physiology, Academy of Sciences of the Czech Republic, 14220, Prague, Czech Republic.
Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA.
J Mol Model. 2015 Nov;21(11):284. doi: 10.1007/s00894-015-2824-9. Epub 2015 Oct 9.
G protein-coupled receptors (GPCRs) are hard to crystallize. However, attempts to predict their structure have boomed as a result of advancements in crystallographic techniques. This trend has allowed computer-aided molecular modeling of GPCRs. We analyzed the performance of four molecular modeling programs in pose evaluation of re-docked antagonists / inverse agonists to 11 original crystal structures of aminergic GPCRs using an induced fit-docking procedure. AutoDock and Glide were used for docking. AutoDock binding energy function, GlideXP, Prime MM-GB/SA, and YASARA binding function were used for pose scoring. Root mean square deviation (RMSD) of the best pose ranged from 0.09 to 1.58 Å, and median RMSD of the top 60 poses ranged from 1.47 to 3.83 Å. However, RMSD of the top pose ranged from 0.13 to 7.33 Å and ranking of the best pose ranged from the 1st to 60th out of 60 poses. Moreover, analysis of ligand-receptor interactions of top poses revealed substantial differences from interactions found in crystallographic structures. Bad ranking of top poses and discrepancies between top docked poses and crystal structures render current simple docking methods unsuitable for predictive modeling of receptor-ligand interactions. Prime MM-GB/SA optimized for 3NY9 by multiple linear regression did not work well at 3NY8 and 3NYA, structures of the same receptor with different ligands. However, 9 of 11 trajectories of molecular dynamics simulations by Desmond of top poses converged with trajectories of crystal structures. Key interactions were properly detected for all structures. This procedure also worked well for cross-docking of tested β2-adrenergic antagonists. Thus, this procedure represents a possible way to predict interactions of antagonists with aminergic GPCRs.
G蛋白偶联受体(GPCRs)难以结晶。然而,由于晶体学技术的进步,预测其结构的尝试蓬勃发展。这种趋势使得GPCRs的计算机辅助分子建模成为可能。我们使用诱导契合对接程序,分析了四种分子建模程序在将重新对接的拮抗剂/反向激动剂与11种胺能GPCRs的原始晶体结构进行姿态评估时的性能。使用AutoDock和Glide进行对接。使用AutoDock结合能函数、GlideXP、Prime MM-GB/SA和YASARA结合函数进行姿态评分。最佳姿态的均方根偏差(RMSD)范围为0.09至1.58Å,前60个姿态的中位RMSD范围为1.47至3.83Å。然而,最佳姿态的RMSD范围为0.13至7.33Å,最佳姿态的排名在60个姿态中从第1名到第60名不等。此外,对最佳姿态的配体-受体相互作用分析显示,与晶体结构中发现的相互作用存在显著差异。最佳姿态的排名不佳以及对接的最佳姿态与晶体结构之间的差异使得当前简单的对接方法不适用于受体-配体相互作用的预测建模。通过多元线性回归针对3NY9优化的Prime MM-GB/SA在3NY8和3NYA(同一受体与不同配体的结构)上效果不佳。然而,Desmond对最佳姿态进行的11次分子动力学模拟轨迹中有9次与晶体结构轨迹收敛。所有结构的关键相互作用均被正确检测到。该程序在测试的β2-肾上腺素能拮抗剂的交叉对接中也表现良好。因此,该程序代表了一种预测拮抗剂与胺能GPCRs相互作用的可能方法。