文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

GPCR 同源模型模板选择基准测试:全局与局部相似性度量。

GPCR homology model template selection benchmarking: Global versus local similarity measures.

机构信息

The University of Memphis, Department of Chemistry, USA.

The University of Memphis, Department of Biological Sciences, USA.

出版信息

J Mol Graph Model. 2019 Jan;86:235-246. doi: 10.1016/j.jmgm.2018.10.016. Epub 2018 Oct 21.


DOI:10.1016/j.jmgm.2018.10.016
PMID:30390544
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6449851/
Abstract

G protein-coupled receptors (GPCR) are integral membrane proteins of considerable interest as targets for drug development. GPCR ligand interaction studies often have a starting point with either crystal structures or comparative models. The majority of GPCR do not have experimentally-characterized 3-dimensional structures, so comparative modeling, also called homology modeling, is a good structure-based starting point. Comparative modeling is a widely used method for generating models of proteins with unknown structures by analogy to crystallized proteins that are expected to exhibit structural conservation. Traditionally, comparative modeling template selection is based on global sequence identity and shared function. However high sequence identity localized to the ligand binding pocket may produce better models to examine protein-ligand interactions. This in silico benchmark study examined the performance of a global versus local similarity measure applied to comparative modeling template selection for 6 previously crystallized, class A GCPR (CXCR4, FFAR1, NOP, P2Y12, OPRK, and M1) with the long-term goal of optimizing GPCR ligand identification efforts. Comparative models were generated from templates selected using both global and local similarity measures. Similarity to reference crystal structures was reflected in RMSD values between atom positions throughout the structure or localized to the ligand binding pocket. Overall, models deviated from the reference crystal structure to a similar degree regardless of whether the template was selected using a global or local similarity measure. Ligand docking simulations were performed to assess relative performance in predicting protein-ligand complex structures and interaction networks. Calculated RMSD values between ligand poses from docking simulations and crystal structures indicate that models based on locally selected templates give docked poses that better mimic crystallographic ligand positions than those based on globally-selected templates in five of the six benchmark cases. However, protein model refinement strategies in advance of ligand docking applications are clearly essential as the average RMSD between crystallographic poses and poses docked into local template models was 9.7 Å and typically less than half of the ligand interaction sites are shared between the docked and crystallographic poses. These data support the utilization of local similarity measures to guide template selection in protocols using comparative models to investigate ligand-receptor interactions.

摘要

G 蛋白偶联受体 (GPCR) 是一种重要的膜蛋白,作为药物开发的靶点具有相当大的吸引力。GPCR 配体相互作用研究通常以晶体结构或比较模型为起点。大多数 GPCR 没有经过实验表征的三维结构,因此比较建模,也称为同源建模,是一个很好的基于结构的起点。比较建模是一种广泛使用的方法,用于通过类比预期具有结构保守性的结晶蛋白来生成未知结构的蛋白质模型。传统上,比较建模模板选择基于全局序列同一性和共享功能。然而,局部到配体结合口袋的高序列同一性可能会产生更好的模型来研究蛋白质-配体相互作用。这项基于计算机的基准研究检查了全局与局部相似性度量在比较建模模板选择中的应用,用于 6 个以前结晶的 A 类 GPCR(CXCR4、FFAR1、NOP、P2Y12、OPRK 和 M1),长期目标是优化 GPCR 配体鉴定工作。使用全局和局部相似性度量选择模板生成了比较模型。与参考晶体结构的相似性反映在整个结构或局部到配体结合口袋的原子位置之间的 RMSD 值上。总体而言,无论模板是使用全局还是局部相似性度量选择的,模型与参考晶体结构的偏差程度都相似。进行配体对接模拟以评估预测蛋白质-配体复合物结构和相互作用网络的相对性能。对接模拟中配体构象与晶体结构之间的计算 RMSD 值表明,在六个基准案例中的五个案例中,基于局部选择模板的模型产生的对接构象比基于全局选择模板的模型更好地模拟晶体配体位置。然而,在进行配体对接应用之前,蛋白质模型的细化策略显然是必不可少的,因为晶体构象和对接到局部模板模型中的构象之间的平均 RMSD 值为 9.7 Å,并且通常只有不到一半的配体相互作用位点在对接和晶体构象之间共享。这些数据支持利用局部相似性度量来指导模板选择,以使用比较模型研究配体-受体相互作用的协议。

相似文献

[1]
GPCR homology model template selection benchmarking: Global versus local similarity measures.

J Mol Graph Model. 2018-10-21

[2]
Benchmarking GPCR homology model template selection in combination with de novo loop generation.

J Comput Aided Mol Des. 2020-10

[3]
Assessing GPCR homology models constructed from templates of various transmembrane sequence identities: Binding mode prediction and docking enrichment.

J Mol Graph Model. 2018-3

[4]
Reliability of Docking-Based Virtual Screening for GPCR Ligands with Homology Modeled Structures: A Case Study of the Angiotensin II Type I Receptor.

ACS Chem Neurosci. 2018-10-17

[5]
Template selection and refinement considerations for modelling aminergic GPCR-ligand complexes.

J Mol Graph Model. 2017-9

[6]
Efficiency of Homology Modeling Assisted Molecular Docking in G-protein Coupled Receptors.

Curr Top Med Chem. 2021

[7]
Using molecular dynamics for the refinement of atomistic models of GPCRs by homology modeling.

J Biomol Struct Dyn. 2017-8-14

[8]
Self-docking and cross-docking simulations of G protein-coupled receptor-ligand complexes: Impact of ligand type and receptor activation state.

J Mol Graph Model. 2022-5

[9]
Homology modeling of G-protein-coupled receptors with X-ray structures on the rise.

Curr Opin Drug Discov Devel. 2010-5

[10]
Impact of template choice on homology model efficiency in virtual screening.

J Chem Inf Model. 2014-6-23

引用本文的文献

[1]
G Protein-Coupled Receptor-Ligand Pose and Functional Class Prediction.

Int J Mol Sci. 2024-6-22

[2]
GPR101: Modeling a constitutively active receptor linked to X-linked acrogigantism.

J Mol Graph Model. 2024-3

[3]
Homology Modeling of Class A G-Protein-Coupled Receptors in the Age of the Structure Boom.

Methods Mol Biol. 2021

[4]
A two-stage computational approach to predict novel ligands for a chemosensory receptor.

Curr Res Struct Biol. 2020-10-9

[5]
BIO-GATS: A Tool for Automated GPCR Template Selection Through a Biophysical Approach for Homology Modeling.

Front Mol Biosci. 2021-4-7

[6]
Benchmarking GPCR homology model template selection in combination with de novo loop generation.

J Comput Aided Mol Des. 2020-10

本文引用的文献

[1]
G protein-coupled receptors: the evolution of structural insight.

AIMS Biophys. 2017

[2]
Structural basis for GPR40 allosteric agonism and incretin stimulation.

Nat Commun. 2018-4-25

[3]
Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor.

Cell. 2018-1-4

[4]
Structural basis for selectivity and diversity in angiotensin II receptors.

Nature. 2017-4-20

[5]
Orphan receptor ligand discovery by pickpocketing pharmacological neighbors.

Nat Chem Biol. 2017-2

[6]
Specific affinity-labeling of the nociceptin ORL1 receptor using a thiol-activated Cys(Npys)-containing peptide ligand.

Biopolymers. 2016-11-4

[7]
The RING 2.0 web server for high quality residue interaction networks.

Nucleic Acids Res. 2016-7-8

[8]
Critical assessment of methods of protein structure prediction: Progress and new directions in round XI.

Proteins. 2016-9

[9]
Crystal structures of the M1 and M4 muscarinic acetylcholine receptors.

Nature. 2016-3-17

[10]
GPCRdb: an information system for G protein-coupled receptors.

Nucleic Acids Res. 2016-1-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索