Zhang Tianqi O, Grechko Maksim, Moran Sean D, Zanni Martin T
Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Methods Mol Biol. 2016;1345:21-41. doi: 10.1007/978-1-4939-2978-8_2.
This chapter provides protocols for isotope-labeling the human islet amyloid polypeptide (hIAPP or amylin) involved in type II diabetes and γD-crystallin involved in cataract formation. Because isotope labeling improves the structural resolution, these protocols are useful for experiments using Fourier transform infrared (FTIR), two-dimensional infrared (2D IR), and NMR spectroscopies. Our research group specializes in using 2D IR spectroscopy and isotope labeling. 2D IR spectroscopy provides structural information by measuring solvation from 2D diagonal lineshapes and vibrational couplings from cross peaks. Infrared spectroscopy can be used to study kinetics, membrane proteins, and aggregated proteins. Isotope labeling provides greater certainty in the spectral assignment, which enables new structural insights that are difficult to obtain with other methods. For amylin, we provide a protocol for (13)C/(18)O labeling backbone carbonyls at one or more desired amino acids in order to obtain residue-specific structural resolution. We also provide a protocol for expressing and purifying amylin from E. coli, which enables uniform (13)C or (13)C/(15)N labeling. Uniform labeling is useful for measuring the monomer infrared spectrum in an amyloid oligomer or fiber as well as amyloid protein bound to another polypeptide or protein, such as a chaperone or an inhibitor. In addition, our expression protocol results in 2-2.5 mg of amylin peptide per 1 L cell culture, which is a high enough yield to straightforwardly obtain the 2-10 mg needed for high resolution and solid-state NMR experiments. Finally, we provide a protocol to isotope-label either of the two domains of γD-crystallin using expressed protein ligation. Domain labeling makes it possible to resolve the structures of the two halves of the protein in FTIR and 2D IR spectra. With modifications, these strategies and protocols for isotope labeling can be applied to other amyloid polypeptides and proteins.
本章提供了对参与II型糖尿病的人胰岛淀粉样多肽(hIAPP或胰岛淀粉样多肽)以及参与白内障形成的γD-晶状体蛋白进行同位素标记的方案。由于同位素标记提高了结构分辨率,这些方案对于使用傅里叶变换红外(FTIR)、二维红外(2D IR)和核磁共振(NMR)光谱的实验很有用。我们的研究小组专门使用2D IR光谱和同位素标记。2D IR光谱通过测量二维对角线形状的溶剂化和交叉峰的振动耦合来提供结构信息。红外光谱可用于研究动力学、膜蛋白和聚集蛋白。同位素标记在光谱归属方面提供了更大的确定性,从而能够获得其他方法难以获得的新的结构见解。对于胰岛淀粉样多肽,我们提供了一个方案,用于在一个或多个所需氨基酸处对(13)C/(18)O标记的主链羰基进行标记,以获得残基特异性的结构分辨率。我们还提供了一个从大肠杆菌中表达和纯化胰岛淀粉样多肽的方案,该方案能够进行均匀的(13)C或(13)C/(15)N标记。均匀标记对于测量淀粉样寡聚体或纤维中的单体红外光谱以及与另一种多肽或蛋白质(如伴侣蛋白或抑制剂)结合的淀粉样蛋白很有用。此外,我们的表达方案每1 L细胞培养物可产生2 - 2.5 mg的胰岛淀粉样多肽,这一产量足以直接获得高分辨率和固态NMR实验所需的2 - 10 mg。最后,我们提供了一个使用表达蛋白连接对γD-晶状体蛋白的两个结构域中的任何一个进行同位素标记的方案。结构域标记使得在FTIR和2D IR光谱中解析蛋白质两半部分的结构成为可能。通过修改,这些同位素标记的策略和方案可应用于其他淀粉样多肽和蛋白质。