Gautier Sarah, Steinmann Stephan N, Michel Carine, Fleurat-Lessard Paul, Sautet Philippe
University of Lyon, CNRS, Laboratoire de Chimie, ENS de Lyon, 46 Allée d'Italie, 69364 Lyon, France.
Phys Chem Chem Phys. 2015 Nov 21;17(43):28921-30. doi: 10.1039/c5cp04534g.
Molecular chemisorption at a metal surface is a key step for many processes, such as catalysis, electrochemistry, surface treatment, tribology and friction. Modeling with density functional theory is largely used on these systems. From a detailed comparison with accurate micro-calorimetric data on ten systems (involving ethylene, cyclohexene, benzene, naphthalene, CO, O2, H2, methane, ethane), we study the accuracy, for chemisorption on Pt(111), of five exchange-correlation functionals including one generalized gradient approximation functional (PBE) and four functionals that take into account van der Waals interactions (optPBE-vdW, optB86b-vdW, BEEF-vdW, PBE-dDsC). If the functionals used provide very similar geometries and electronic structures, as shown by projected density of states, they give strikingly different results for the adsorption energy of molecules on Pt(111). Among the set of chemisorption data, the lowest mean absolute deviations (MAD) are obtained with the optPBE-vdW and PBE-dDsC functionals (∼0.2 eV) while PBE and optB86b-vdW give twice larger MAD (∼0.45 eV). BEEF-vdW is intermediate with a MAD of 0.33 eV. For laterally π-bound unsaturated hydrocarbons (cyclohexene, benzene, naphthalene) the PBE and the BEEF-vdW functionals are severally under-bound, while optPBE-vdW and PBE-dDsC provide a good match with experiments. Hence both the incorporation of van der Waals dispersive forces and the choice of the exchange functional have a key influence on the chemisorption energy. Vertically bound ethylidyne and CO are in contrast over-bound with all functionals, the best agreement being obtained with BEEF-vdW. None of the selected functionals hence provides a universally accurate treatment of chemisorption energies.
分子在金属表面的化学吸附是许多过程的关键步骤,如催化、电化学、表面处理、摩擦学和摩擦。密度泛函理论建模在这些体系中被大量使用。通过与十个体系(涉及乙烯、环己烯、苯、萘、一氧化碳、氧气、氢气、甲烷、乙烷)的精确微量热数据进行详细比较,我们研究了五种交换关联泛函对Pt(111)表面化学吸附的准确性,其中包括一种广义梯度近似泛函(PBE)和四种考虑范德华相互作用的泛函(optPBE-vdW、optB86b-vdW、BEEF-vdW、PBE-dDsC)。如果所使用的泛函提供非常相似的几何结构和电子结构,如态密度投影所示,那么它们对于分子在Pt(111)上的吸附能会给出截然不同的结果。在这组化学吸附数据中,optPBE-vdW和PBE-dDsC泛函得到的平均绝对偏差(MAD)最低(约0.2电子伏特),而PBE和optB86b-vdW的MAD则是前者的两倍(约0.45电子伏特)。BEEF-vdW处于中间水平,MAD为0.33电子伏特。对于横向π键合的不饱和烃(环己烯、苯、萘),PBE和BEEF-vdW泛函的结合能分别偏低,而optPBE-vdW和PBE-dDsC与实验结果匹配良好。因此,范德华色散力的纳入以及交换泛函的选择对化学吸附能都有关键影响。相比之下,垂直键合的乙炔和一氧化碳与所有泛函的结合能都偏高,BEEF-vdW给出的结果与实验的一致性最好。因此,所选择的泛函中没有一个能对化学吸附能进行普遍准确的处理。