Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
Neuroimage. 2013 Jan 1;64:571-81. doi: 10.1016/j.neuroimage.2012.08.051. Epub 2012 Aug 25.
An important step in PET brain kinetic analysis is the registration of functional data to an anatomical MR image. Typically, PET-MR registrations in nonhuman primate neuroreceptor studies used PET images acquired early post-injection, (e.g., 0-10 min) to closely resemble the subject's MR image. However, a substantial fraction of these registrations (~25%) fail due to the differences in kinetics and distribution for various radiotracer studies and conditions (e.g., blocking studies). The Multi-Transform Method (MTM) was developed to improve the success of registrations between PET and MR images. Two algorithms were evaluated, MTM-I and MTM-II. The approach involves creating multiple transformations by registering PET images of different time intervals, from a dynamic study, to a single reference (i.e., MR image) (MTM-I) or to multiple reference images (i.e., MR and PET images pre-registered to the MR) (MTM-II). Normalized mutual information was used to compute similarity between the transformed PET images and the reference image(s) to choose the optimal transformation. This final transformation is used to map the dynamic dataset into the animal's anatomical MR space, required for kinetic analysis. The chosen transforms from MTM-I and MTM-II were evaluated using visual rating scores to assess the quality of spatial alignment between the resliced PET and reference images. One hundred twenty PET datasets involving eleven different tracers from 3 different scanners were used to evaluate the MTM algorithms. Studies were performed with baboons and rhesus monkeys on the HR+, HRRT, and Focus-220. Successful transformations increased from 77.5%, 85.8%, to 96.7% using the 0-10 min method, MTM-I, and MTM-II, respectively, based on visual rating scores. The Multi-Transform Methods proved to be a robust technique for PET-MR registrations for a wide range of PET studies.
在 PET 脑动力学分析中,一个重要步骤是将功能数据注册到解剖学 MR 图像。通常,在非人类灵长类神经受体研究中,使用 PET-MR 注册 PET 图像采集后早期,(例如,0-10 分钟),以紧密类似于受试者的 MR 图像。然而,由于各种示踪剂研究和条件(例如,阻断研究)的动力学和分布差异,这些注册中有相当一部分(~25%)失败。多变换方法(MTM)是为了提高 PET 和 MR 图像之间注册的成功率而开发的。评估了两种算法,MTM-I 和 MTM-II。该方法涉及通过将来自动态研究的不同时间间隔的 PET 图像注册到单个参考(即,MR 图像)(MTM-I)或多个参考图像(即,预注册到 MR 的 MR 和 PET 图像)(MTM-II)来创建多个变换。归一化互信息用于计算变换后的 PET 图像与参考图像之间的相似性,以选择最佳变换。该最终变换用于将动态数据集映射到动物的解剖学 MR 空间,这是动力学分析所必需的。使用视觉评分来评估切片后的 PET 和参考图像之间的空间对准质量,评估 MTM-I 和 MTM-II 中的选择变换。从 3 种不同的扫描仪评估了涉及 11 种不同示踪剂的 120 个 PET 数据集,用于评估 MTM 算法。在 HR+、HRRT 和 Focus-220 上进行了 baboon 和 rhesus 猴子的研究。基于视觉评分,使用 0-10 分钟方法、MTM-I 和 MTM-II 分别将成功的转换从 77.5%、85.8%增加到 96.7%。多变换方法被证明是一种用于广泛的 PET 研究的 PET-MR 注册的稳健技术。