Jacobson Peter, Herden Tobias, Muenks Matthias, Laskin Gennadii, Brovko Oleg, Stepanyuk Valeri, Ternes Markus, Kern Klaus
Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany.
Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle(Saale), Germany.
Nat Commun. 2015 Oct 12;6:8536. doi: 10.1038/ncomms9536.
Single molecule magnets and single spin centres can be individually addressed when coupled to contacts forming an electrical junction. To control and engineer the magnetism of quantum devices, it is necessary to quantify how the structural and chemical environment of the junction affects the spin centre. Metrics such as coordination number or symmetry provide a simple method to quantify the local environment, but neglect the many-body interactions of an impurity spin coupled to contacts. Here, we utilize a highly corrugated hexagonal boron nitride monolayer to mediate the coupling between a cobalt spin in CoHx (x=1,2) complexes and the metal contact. While hydrogen controls the total effective spin, the corrugation smoothly tunes the Kondo exchange interaction between the spin and the underlying metal. Using scanning tunnelling microscopy and spectroscopy together with numerical simulations, we quantitatively demonstrate how the Kondo exchange interaction mimics chemical tailoring and changes the magnetic anisotropy.
当单分子磁体和单自旋中心与形成电结的触点耦合时,可以对其进行单独寻址。为了控制和设计量子器件的磁性,有必要量化结的结构和化学环境如何影响自旋中心。诸如配位数或对称性等指标提供了一种量化局部环境的简单方法,但忽略了与触点耦合的杂质自旋的多体相互作用。在这里,我们利用高度波纹状的六方氮化硼单层来介导CoHx(x = 1, 2)络合物中的钴自旋与金属触点之间的耦合。虽然氢控制着总有效自旋,但波纹状结构可以平滑地调节自旋与底层金属之间的近藤交换相互作用。通过结合扫描隧道显微镜和光谱学以及数值模拟,我们定量地证明了近藤交换相互作用如何模拟化学剪裁并改变磁各向异性。