Suppr超能文献

磁量子隧道效应:来自简单分子基磁铁的启示。

Magnetic quantum tunneling: insights from simple molecule-based magnets.

机构信息

NHMFL and Department of Physics, Florida State University, Tallahassee, FL 32310, USA.

出版信息

Dalton Trans. 2010 May 28;39(20):4693-707. doi: 10.1039/c002750b. Epub 2010 Apr 19.

Abstract

This perspectives article takes a broad view of the current understanding of magnetic bistability and magnetic quantum tunneling in single-molecule magnets (SMMs), focusing on three families of relatively simple, low-nuclearity transition metal clusters: spin S = 4 Ni(II)(4), Mn(III)(3) (S = 2 and 6) and Mn(III)(6) (S = 4 and 12). The Mn(III) complexes are related by the fact that they contain triangular Mn(III)(3) units in which the exchange may be switched from antiferromagnetic to ferromagnetic without significantly altering the coordination around the Mn(III) centers, thereby leaving the single-ion physics more-or-less unaltered. This allows for a detailed and systematic study of the way in which the individual-ion anisotropies project onto the molecular spin ground state in otherwise identical low- and high-spin molecules, thus providing unique insights into the key factors that control the quantum dynamics of SMMs, namely: (i) the height of the kinetic barrier to magnetization relaxation; and (ii) the transverse interactions that cause tunneling through this barrier. Numerical calculations are supported by an unprecedented experimental data set (17 different compounds), including very detailed spectroscopic information obtained from high-frequency electron paramagnetic resonance and low-temperature hysteresis measurements. Comparisons are made between the giant spin and multi-spin phenomenologies. The giant spin approach assumes the ground state spin, S, to be exact, enabling implementation of simple anisotropy projection techniques. This methodology provides a basic understanding of the concept of anisotropy dilution whereby the cluster anisotropy decreases as the total spin increases, resulting in a barrier that depends weakly on S. This partly explains why the record barrier for a SMM (86 K for Mn(6)) has barely increased in the 15 years since the first studies of Mn(12)-acetate, and why the tiny Mn(3) molecule can have a barrier approaching 60% of this record. Ultimately, the giant spin approach fails to capture all of the key physics, although it works remarkably well for the purely ferromagnetic cases. Nevertheless, diagonalization of the multi-spin Hamiltonian matrix is necessary in order to fully capture the interplay between exchange and local anisotropy, and the resultant spin-state mixing which ultimately gives rise to the tunneling matrix elements in the high symmetry SMMs (ferromagnetic Mn(3) and Ni(4)). The simplicity (low-nuclearity, high-symmetry, weak disorder, etc.) of the molecules highlighted in this study proves to be of crucial importance. Not only that, these simple molecules may be considered among the best SMMs: Mn(6) possesses the record anisotropy barrier, and Mn(3) is the first SMM to exhibit quantum tunneling selection rules that reflect the intrinsic symmetry of the molecule.

摘要

这篇观点文章从广泛的角度探讨了当前对单分子磁体(SMM)中磁双稳和磁量子隧穿的理解,重点关注三类相对简单、核数较低的过渡金属簇:自旋 S=4 的 Ni(II)(4)、自旋 S=2 和 6 的 Mn(III)(3)以及自旋 S=4 和 12 的 Mn(III)(6)。Mn(III)配合物之间存在关联,因为它们都包含三角形的 Mn(III)(3)单元,其中交换可以从反铁磁变为铁磁,而不会显著改变 Mn(III)中心周围的配位,从而使单离子物理性质或多或少保持不变。这使得可以详细系统地研究单个离子各向异性在低自旋和高自旋分子中如何投影到分子自旋基态,从而为控制 SMM 量子动力学的关键因素提供了独特的见解,即:(i)磁化弛豫的动力学势垒高度;(ii)导致穿过该势垒的隧道的横向相互作用。数值计算得到了前所未有的实验数据集(17 种不同的化合物)的支持,其中包括从高频电子顺磁共振和低温磁滞测量中获得的非常详细的光谱信息。对巨自旋和多自旋现象进行了比较。巨自旋方法假设基态自旋 S 是精确的,从而能够实现简单的各向异性投影技术。该方法提供了各向异性稀释概念的基本理解,即随着总自旋的增加,簇各向异性减小,导致对 S 依赖性较弱的势垒。这部分解释了为什么自第一个 Mn(12)-醋酸酯研究以来的 15 年中,SMM 的记录势垒(Mn(6)为 86 K)几乎没有增加,以及为什么微小的 Mn(3)分子的势垒接近该记录的 60%。最终,巨自旋方法无法捕捉所有关键物理,尽管它对纯铁磁情况非常有效。尽管如此,为了充分捕捉交换和局部各向异性之间的相互作用以及最终导致高对称性 SMM(铁磁 Mn(3)和 Ni(4))中隧道矩阵元的自旋态混合,有必要对角化多自旋哈密顿矩阵。在这项研究中突出的分子的简单性(低核数、高对称性、弱无序等)被证明是至关重要的。不仅如此,这些简单的分子可以被认为是最好的 SMM 之一:Mn(6)具有记录的各向异性势垒,而 Mn(3)是第一个表现出反映分子固有对称性的量子隧道选择规则的 SMM。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验