Sun Xiuxia, Liu Songqing, Yu Wenyuan, Wang Shaoru, Xiao Jianxi
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China.
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
Protein Sci. 2016 Feb;25(2):383-92. doi: 10.1002/pro.2828. Epub 2015 Nov 26.
Even a single Gly substitution in the triple helix domain of collagen leads to pathological conditions while natural interruptions are suggested to play important functional roles. Two peptides-one mimicking a pathological Gly-Ser substitution (ERSEQ) and the other one modeling a similar natural interruption sequence (DRSER)-are designed to facilitate the comparison for elucidating the molecular basis of their different biological roles. CD and NMR investigation of peptide ERSEQ indicates a reduction of the thermal stability and disruption of hydrogen bonding at the Ser mutation site, providing a structural basis of the OI disease resulting from the Gly-Ser mutation in the highly charged RGE environment. Both CD and NMR real-time folding results indicate that peptide ERSEQ displays a comparatively slower folding rate than peptide DRSER, suggesting that the Gly-Ser mutation may lead to a larger interference in folding than the natural interruption in a similar RSE context. Our studies suggest that unlike the rigid GPO environment, the abundant R(K)GE(D) motif may provide a more flexible sequence environment that better accommodates mutations as well as interruptions, while the electrostatic interactions contribute to its stability. These results shed insight into the molecular features of the highly charged motif and may aid the design of collagen biomimetic peptides containing important biological sites.
即使胶原蛋白三螺旋结构域中的单个甘氨酸(Gly)被取代也会导致病理状况,而天然中断被认为起着重要的功能作用。设计了两种肽——一种模拟病理性的甘氨酸 - 丝氨酸(Gly-Ser)取代(ERSEQ),另一种模拟类似的天然中断序列(DRSER),以促进比较,从而阐明它们不同生物学作用的分子基础。对肽ERSEQ的圆二色光谱(CD)和核磁共振(NMR)研究表明,丝氨酸(Ser)突变位点的热稳定性降低且氢键被破坏,这为高电荷RGE环境中甘氨酸 - 丝氨酸突变导致的成骨不全症(OI)提供了结构基础。CD和NMR实时折叠结果均表明,肽ERSEQ的折叠速率比肽DRSER慢,这表明在类似的RSE环境中,甘氨酸 - 丝氨酸突变可能比天然中断对折叠产生更大的干扰。我们的研究表明,与刚性的GPO环境不同,丰富的R(K)GE(D)基序可能提供更灵活的序列环境,能更好地适应突变和中断,而静电相互作用有助于其稳定性。这些结果深入了解了高电荷基序的分子特征,并可能有助于设计含有重要生物学位点的胶原蛋白仿生肽。