Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854.
Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854.
J Biol Chem. 2019 Sep 27;294(39):14442-14453. doi: 10.1074/jbc.RA119.009685. Epub 2019 Aug 12.
Collagens carry out critical extracellular matrix (ECM) functions by interacting with numerous cell receptors and ECM components. Single glycine substitutions in collagen III, which predominates in vascular walls, result in vascular Ehlers-Danlos syndrome (vEDS), leading to arterial, uterine, and intestinal rupture and an average life expectancy of <50 years. Collagen interactions with integrin αβ are vital for platelet adhesion and activation; however, how these interactions are impacted by vEDS-associated mutations and by specific amino acid substitutions is unclear. Here, we designed collagen-mimetic peptides (CMPs) with previously reported Gly → Xaa (Xaa = Ala, Arg, or Val) vEDS substitutions within a high-affinity integrin αβ-binding motif, GROGER. We used these peptides to investigate, at atomic-level resolution, how these amino acid substitutions affect the collagen III-integrin αβ interaction. Using a multitiered approach combining biological adhesion assays, CD, NMR, and molecular dynamics (MD) simulations, we found that these substitutions differentially impede human mesenchymal stem cell spreading and integrin α-inserted (αI) domain binding to the CMPs and were associated with triple-helix destabilization. Although an Ala substitution locally destabilized hydrogen bonding and enhanced mobility, it did not significantly reduce the CMP-integrin interactions. MD simulations suggested that bulkier Gly → Xaa substitutions differentially disrupt the CMP-αI interaction. The Gly → Arg substitution destabilized CMP-αI side-chain interactions, and the Gly → Val change broke the essential Mg coordination. The relationship between the loss of functional binding and the type of vEDS substitution provides a foundation for developing potential therapies for managing collagen disorders.
胶原蛋白通过与众多细胞受体和细胞外基质成分相互作用,发挥着至关重要的细胞外基质 (ECM) 功能。胶原蛋白 III 中的单个甘氨酸取代(在血管壁中占主导地位)会导致血管性埃勒斯-当洛斯综合征 (vEDS),导致动脉、子宫和肠道破裂,平均预期寿命<50 岁。胶原蛋白与整合素 αβ 的相互作用对于血小板黏附和激活至关重要;然而,这些相互作用如何受到与 vEDS 相关的突变以及特定氨基酸取代的影响尚不清楚。在这里,我们设计了胶原蛋白模拟肽 (CMP),其中包含之前报道的 Gly → Xaa(Xaa = Ala、Arg 或 Val)vEDS 取代,位于高亲和力整合素 αβ 结合基序 GROGER 内。我们使用这些肽以原子级分辨率研究这些氨基酸取代如何影响胶原蛋白 III-整合素 αβ 相互作用。通过结合生物黏附测定、CD、NMR 和分子动力学 (MD) 模拟的多层次方法,我们发现这些取代物以不同的方式阻碍了人间充质干细胞的扩散和整合素 α 插入 (αI) 结构域与 CMP 的结合,并与三螺旋体的不稳定性有关。尽管 Ala 取代局部破坏了氢键并增加了流动性,但它并没有显著降低 CMP-整合素的相互作用。MD 模拟表明,体积更大的 Gly → Xaa 取代以不同的方式破坏了 CMP-αI 相互作用。Gly → Arg 取代破坏了 CMP-αI 侧链相互作用,而 Gly → Val 变化破坏了必需的 Mg 配位。功能结合丧失与 vEDS 取代类型之间的关系为开发管理胶原蛋白疾病的潜在治疗方法提供了基础。