Suppr超能文献

基于歧视的生存时间数据多变量预后模型的样本量计算

Discrimination-based sample size calculations for multivariable prognostic models for time-to-event data.

作者信息

Jinks Rachel C, Royston Patrick, Parmar Mahesh K B

机构信息

MRC Clinical Trials Unit at UCL, Aviation House, 125 Kingsway, London, WC2B 6NH, UK.

出版信息

BMC Med Res Methodol. 2015 Oct 12;15:82. doi: 10.1186/s12874-015-0078-y.

Abstract

BACKGROUND

Prognostic studies of time-to-event data, where researchers aim to develop or validate multivariable prognostic models in order to predict survival, are commonly seen in the medical literature; however, most are performed retrospectively and few consider sample size prior to analysis. Events per variable rules are sometimes cited, but these are based on bias and coverage of confidence intervals for model terms, which are not of primary interest when developing a model to predict outcome. In this paper we aim to develop sample size recommendations for multivariable models of time-to-event data, based on their prognostic ability.

METHODS

We derive formulae for determining the sample size required for multivariable prognostic models in time-to-event data, based on a measure of discrimination, D, developed by Royston and Sauerbrei. These formulae fall into two categories: either based on the significance of the value of D in a new study compared to a previous estimate, or based on the precision of the estimate of D in a new study in terms of confidence interval width. Using simulation we show that they give the desired power and type I error and are not affected by random censoring. Additionally, we conduct a literature review to collate published values of D in different disease areas.

RESULTS

We illustrate our methods using parameters from a published prognostic study in liver cancer. The resulting sample sizes can be large, and we suggest controlling study size by expressing the desired accuracy in the new study as a relative value as well as an absolute value. To improve usability we use the values of D obtained from the literature review to develop an equation to approximately convert the commonly reported Harrell's c-index to D. A flow chart is provided to aid decision making when using these methods.

CONCLUSION

We have developed a suite of sample size calculations based on the prognostic ability of a survival model, rather than the magnitude or significance of model coefficients. We have taken care to develop the practical utility of the calculations and give recommendations for their use in contemporary clinical research.

摘要

背景

在医学文献中,针对事件发生时间数据的预后研究很常见,研究人员旨在开发或验证多变量预后模型以预测生存率;然而,大多数此类研究是回顾性进行的,很少有研究在分析前考虑样本量。有时会引用每个变量的事件规则,但这些规则基于偏差和模型项置信区间的覆盖范围,而在开发预测结果的模型时,这些并非主要关注点。在本文中,我们旨在根据多变量模型对事件发生时间数据的预后能力制定样本量建议。

方法

我们基于Royston和Sauerbrei开发的一种区分度度量D,推导出用于确定事件发生时间数据多变量预后模型所需样本量的公式。这些公式分为两类:一类基于新研究中D值与先前估计值相比的显著性,另一类基于新研究中D估计值在置信区间宽度方面的精度。通过模拟我们表明,它们能提供所需的检验效能和I型错误,且不受随机删失的影响。此外,我们进行了文献综述,以整理不同疾病领域已发表的D值。

结果

我们使用来自一项已发表的肝癌预后研究的参数来说明我们的方法。得出的样本量可能会很大,我们建议通过将新研究中所需的准确度表示为相对值和绝对值来控制研究规模。为提高实用性,我们利用文献综述中获得的D值来建立一个方程,以近似地将常用的Harrell's c指数转换为D。提供了一个流程图,以帮助在使用这些方法时进行决策。

结论

我们基于生存模型的预后能力开发了一套样本量计算方法,而非基于模型系数的大小或显著性。我们已注意提高这些计算方法的实际效用,并就其在当代临床研究中的应用给出建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f47/4603804/5f0d32f5d0b3/12874_2015_78_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验