Suppr超能文献

临床预测模型的外部验证:基于模拟的样本量计算比经验法则更可靠。

External validation of clinical prediction models: simulation-based sample size calculations were more reliable than rules-of-thumb.

机构信息

Centre for Prognosis Research, School of Medicine, Keele University, Keele, Staffordshire, United Kingdom.

Centre for Prognosis Research, School of Medicine, Keele University, Keele, Staffordshire, United Kingdom.

出版信息

J Clin Epidemiol. 2021 Jul;135:79-89. doi: 10.1016/j.jclinepi.2021.02.011. Epub 2021 Feb 14.

Abstract

INTRODUCTION

Sample size "rules-of-thumb" for external validation of clinical prediction models suggest at least 100 events and 100 non-events. Such blanket guidance is imprecise, and not specific to the model or validation setting. We investigate factors affecting precision of model performance estimates upon external validation, and propose a more tailored sample size approach.

METHODS

Simulation of logistic regression prediction models to investigate factors associated with precision of performance estimates. Then, explanation and illustration of a simulation-based approach to calculate the minimum sample size required to precisely estimate a model's calibration, discrimination and clinical utility.

RESULTS

Precision is affected by the model's linear predictor (LP) distribution, in addition to number of events and total sample size. Sample sizes of 100 (or even 200) events and non-events can give imprecise estimates, especially for calibration. The simulation-based calculation accounts for the LP distribution and (mis)calibration in the validation sample. Application identifies 2430 required participants (531 events) for external validation of a deep vein thrombosis diagnostic model.

CONCLUSION

Where researchers can anticipate the distribution of the model's LP (eg, based on development sample, or a pilot study), a simulation-based approach for calculating sample size for external validation offers more flexibility and reliability than rules-of-thumb.

摘要

简介

用于临床预测模型外部验证的样本量“经验法则”建议至少有 100 个事件和 100 个非事件。这种笼统的指导意见不够精确,也不适用于模型或验证设置。我们研究了影响外部验证时模型性能估计精度的因素,并提出了一种更具针对性的样本量方法。

方法

模拟逻辑回归预测模型,以研究与性能估计精度相关的因素。然后,解释并说明了一种基于模拟的方法,用于计算精确估计模型校准、区分度和临床实用性所需的最小样本量。

结果

精度受模型的线性预测器(LP)分布的影响,除了事件数量和总样本量。即使有 100 个(甚至 200 个)事件和非事件,估计也可能不够精确,尤其是在校准方面。基于模拟的计算考虑了验证样本中的 LP 分布和(误)校准。该应用程序确定了 2430 名(531 个事件)参与者用于深静脉血栓形成诊断模型的外部验证。

结论

如果研究人员可以预测模型 LP 的分布(例如,基于开发样本或试点研究),则基于模拟的计算外部验证样本量的方法比经验法则更灵活和可靠。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/212d/8352630/d1ba7b68b41f/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验