Suppr超能文献

具有子网节点的多层极限学习机的表示学习。

Multilayer Extreme Learning Machine With Subnetwork Nodes for Representation Learning.

出版信息

IEEE Trans Cybern. 2016 Nov;46(11):2570-2583. doi: 10.1109/TCYB.2015.2481713. Epub 2015 Oct 9.

Abstract

The extreme learning machine (ELM), which was originally proposed for "generalized" single-hidden layer feedforward neural networks, provides efficient unified learning solutions for the applications of clustering, regression, and classification. It presents competitive accuracy with superb efficiency in many applications. However, ELM with subnetwork nodes architecture has not attracted much research attentions. Recently, many methods have been proposed for supervised/unsupervised dimension reduction or representation learning, but these methods normally only work for one type of problem. This paper studies the general architecture of multilayer ELM (ML-ELM) with subnetwork nodes, showing that: 1) the proposed method provides a representation learning platform with unsupervised/supervised and compressed/sparse representation learning and 2) experimental results on ten image datasets and 16 classification datasets show that, compared to other conventional feature learning methods, the proposed ML-ELM with subnetwork nodes performs competitively or much better than other feature learning methods.

摘要

极限学习机 (ELM) 最初是为“广义”单隐层前馈神经网络提出的,为聚类、回归和分类的应用提供了高效的统一学习解决方案。它在许多应用中以出色的效率提供了有竞争力的准确性。然而,具有子网节点架构的 ELM 并没有引起太多研究关注。最近,已经提出了许多用于监督/无监督降维或表示学习的方法,但这些方法通常仅适用于一种类型的问题。本文研究了具有子网节点的多层 ELM (ML-ELM) 的通用架构,表明:1)所提出的方法提供了一个表示学习平台,具有无监督/监督和压缩/稀疏表示学习,2)在十个图像数据集和 16 个分类数据集上的实验结果表明,与其他传统特征学习方法相比,具有子网节点的 ML-ELM 性能优于或优于其他特征学习方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验