Suppr超能文献

极限学习机用于多层感知机。

Extreme Learning Machine for Multilayer Perceptron.

出版信息

IEEE Trans Neural Netw Learn Syst. 2016 Apr;27(4):809-21. doi: 10.1109/TNNLS.2015.2424995. Epub 2015 May 7.

Abstract

Extreme learning machine (ELM) is an emerging learning algorithm for the generalized single hidden layer feedforward neural networks, of which the hidden node parameters are randomly generated and the output weights are analytically computed. However, due to its shallow architecture, feature learning using ELM may not be effective for natural signals (e.g., images/videos), even with a large number of hidden nodes. To address this issue, in this paper, a new ELM-based hierarchical learning framework is proposed for multilayer perceptron. The proposed architecture is divided into two main components: 1) self-taught feature extraction followed by supervised feature classification and 2) they are bridged by random initialized hidden weights. The novelties of this paper are as follows: 1) unsupervised multilayer encoding is conducted for feature extraction, and an ELM-based sparse autoencoder is developed via l1 constraint. By doing so, it achieves more compact and meaningful feature representations than the original ELM; 2) by exploiting the advantages of ELM random feature mapping, the hierarchically encoded outputs are randomly projected before final decision making, which leads to a better generalization with faster learning speed; and 3) unlike the greedy layerwise training of deep learning (DL), the hidden layers of the proposed framework are trained in a forward manner. Once the previous layer is established, the weights of the current layer are fixed without fine-tuning. Therefore, it has much better learning efficiency than the DL. Extensive experiments on various widely used classification data sets show that the proposed algorithm achieves better and faster convergence than the existing state-of-the-art hierarchical learning methods. Furthermore, multiple applications in computer vision further confirm the generality and capability of the proposed learning scheme.

摘要

极限学习机(ELM)是一种新兴的广义单隐层前馈神经网络学习算法,其隐层节点参数是随机生成的,输出权重是解析计算的。然而,由于其浅层结构,使用 ELM 进行特征学习对于自然信号(例如图像/视频)可能效果不佳,即使使用大量的隐层节点。为了解决这个问题,本文提出了一种新的基于 ELM 的多层感知机分层学习框架。所提出的架构分为两个主要部分:1)自监督特征提取,然后是监督特征分类,2)它们由随机初始化的隐层权重连接。本文的新颖之处在于:1)进行无监督的多层编码进行特征提取,并通过 l1 约束开发基于 ELM 的稀疏自动编码器。通过这样做,它实现了比原始 ELM 更紧凑和更有意义的特征表示;2)利用 ELM 随机特征映射的优势,对分层编码的输出进行随机投影,然后做出最终决策,从而实现更好的泛化能力和更快的学习速度;3)与深度学习(DL)的贪婪逐层训练不同,所提出框架的隐层以正向方式进行训练。一旦建立了前一层,当前层的权重就固定不变,无需微调。因此,它比 DL 具有更好的学习效率。在各种广泛使用的分类数据集上的大量实验表明,所提出的算法比现有的分层学习方法具有更好的和更快的收敛性。此外,计算机视觉中的多个应用进一步证实了所提出的学习方案的通用性和能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验