Anwar Saneela, Minhas Rashid, Ali Shahid, Lambert Nicholas, Kawakami Yasuhiko, Elgar Greg, Azam Syed Sikandar, Abbasi Amir Ali
National Center for Bioinformatics, Computational Biology Lab, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
Dev Growth Differ. 2015 Oct;57(8):570-80. doi: 10.1111/dgd.12239. Epub 2015 Oct 14.
The zinc-finger transcription factor GLI3 acts as a primary transducer of Sonic hedgehog (Shh) signaling in a context-dependent combinatorial fashion. GLI3 participates in the patterning and growth of many organs, including the central nervous system (CNS) and limbs. Previously, we reported a subset of human intronic cis-regulators controlling many known aspects of endogenous Gli3 expression in mouse and zebrafish. Here we demonstrate in a transgenic zebrafish assay the potential of two novel tetrapod-teleost conserved non-coding elements (CNEs) docking within GLI3 intronic intervals (intron 3 and 4) to induce reporter gene expression at known sites of endogenous Gli3 transcription in embryonic domains such as the central nervous system (CNS) and limbs. Interestingly, the cell culture based assays reveal harmony with the context dependent dual nature of intra-GLI3 conserved elements. Furthermore, a transgenic zebrafish assay of previously reported limb-specific GLI3 transcriptional enhancers (previously tested in mice and chicken limb buds) induced reporter gene expression in zebrafish blood precursor cells and notochord instead of fin. These results demonstrate that the appendage-specific activity of a subset of GLI3-associated enhancers might be a tetrapod innovation. Taken together with our recent data, these results suggest that during the course of vertebrate evolution Gli3 expression control acquired a complex cis-regulatory landscape for spatiotemporal patterning of CNS and limbs. Comparative data from fish and mice suggest that the functional aspects of a subset of these cis-regulators have diverged significantly between these two lineages.
锌指转录因子GLI3以依赖于上下文的组合方式作为音猬因子(Shh)信号的主要转导器。GLI3参与包括中枢神经系统(CNS)和四肢在内的许多器官的模式形成和生长。此前,我们报道了一组人类内含子顺式调节因子,它们控制着小鼠和斑马鱼内源性Gli3表达的许多已知方面。在此,我们在转基因斑马鱼实验中证明,两个新的四足动物-硬骨鱼保守非编码元件(CNEs)定位于GLI3内含子区间(内含子3和4)内,能够在胚胎区域如中枢神经系统(CNS)和四肢中内源性Gli3转录的已知位点诱导报告基因表达。有趣的是,基于细胞培养的实验揭示了与GLI3内保守元件依赖于上下文的双重性质的一致性。此外,对先前报道的肢体特异性GLI3转录增强子(先前在小鼠和鸡肢体芽中进行过测试)进行的转基因斑马鱼实验,在斑马鱼血液前体细胞和脊索而非鳍中诱导了报告基因表达。这些结果表明,GLI3相关增强子子集的附属物特异性活性可能是四足动物的一项创新。结合我们最近的数据,这些结果表明,在脊椎动物进化过程中,Gli3表达控制获得了一个复杂的顺式调节景观,用于中枢神经系统和四肢的时空模式形成。来自鱼类和小鼠的比较数据表明,这些顺式调节因子子集中的一部分在这两个谱系之间的功能方面已经有了显著差异。