Suppr超能文献

利用HJ-1 CCD和Landsat-8 OLI植被指数时间序列影像估算水稻物候期日期

Estimation of rice phenology date using integrated HJ-1 CCD and Landsat-8 OLI vegetation indices time-series images.

作者信息

Wang Jing, Huang Jing-feng, Wang Xiu-zhen, Jin Meng-ting, Zhou Zhen, Guo Qiao-ying, Zhao Zhe-wen, Huang Wei-jiao, Zhang Yao, Song Xiao-dong

机构信息

Institute of Remote Sensing and Information Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

Institute of Remote Sensing and Earth Sciences, Hangzhou Normal University, Hangzhou 311121, China.

出版信息

J Zhejiang Univ Sci B. 2015 Oct;16(10):832-44. doi: 10.1631/jzus.B1500087.

Abstract

Accurate estimation of rice phenology is of critical importance for agricultural practices and studies. However, the accuracy of phenological parameters extracted by remote sensing data cannot be guaranteed because of the influence of climate, e.g. the monsoon season, and limited available remote sensing data. In this study, we integrate the data of HJ-1 CCD and Landsat-8 operational land imager (OLI) by using the ordinary least-squares (OLS), and construct higher temporal resolution vegetation indices (VIs) time-series data to extract the phenological parameters of single-cropped rice. Two widely used VIs, namely the normalized difference vegetation index (NDVI) and 2-band enhanced vegetation index (EVI2), were adopted to minimize the influence of environmental factors and the intrinsic difference between the two sensors. Savitzky-Golay (S-G) filters were applied to construct continuous VI profiles per pixel. The results showed that, compared with NDVI, EVI2 was more stable and comparable between the two sensors. Compared with the observed phenological data of the single-cropped rice, the integrated VI time-series had a relatively low root mean square error (RMSE), and EVI2 showed higher accuracy compared with NDVI. We also demonstrate the application of phenology extraction of the single-cropped rice in a spatial scale in the study area. While the work is of general value, it can also be extrapolated to other regions where qualified remote sensing data are the bottleneck but where complementary data are occasionally available.

摘要

准确估算水稻物候期对农业实践和研究至关重要。然而,由于气候(如季风季节)的影响以及可用遥感数据有限,通过遥感数据提取的物候参数的准确性无法得到保证。在本研究中,我们使用普通最小二乘法(OLS)整合了HJ-1 CCD和Landsat-8 业务陆地成像仪(OLI)的数据,并构建了更高时间分辨率的植被指数(VI)时间序列数据,以提取单季稻的物候参数。采用了两种广泛使用的植被指数,即归一化差异植被指数(NDVI)和双波段增强植被指数(EVI2),以尽量减少环境因素的影响以及两个传感器之间的固有差异。应用Savitzky-Golay(S-G)滤波器为每个像素构建连续的植被指数剖面。结果表明,与NDVI相比,EVI2在两个传感器之间更稳定且具有可比性。与单季稻的观测物候数据相比,整合后的植被指数时间序列具有相对较低的均方根误差(RMSE),并且EVI2与NDVI相比显示出更高的准确性。我们还展示了单季稻物候提取在研究区域空间尺度上的应用。虽然这项工作具有普遍价值,但它也可以推广到其他地区,在这些地区,高质量的遥感数据是瓶颈,但偶尔可以获得补充数据。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验