Weber Christoph A, Lin Yen Ting, Biais Nicolas, Zaburdaev Vasily
Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden 01187, Germany.
Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York 11210, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032704. doi: 10.1103/PhysRevE.92.032704. Epub 2015 Sep 3.
Many organisms form colonies for a transient period of time to withstand environmental pressure. Bacterial biofilms are a prototypical example of such behavior. Despite significant interest across disciplines, physical mechanisms governing the formation and dissolution of bacterial colonies are still poorly understood. Starting from a kinetic description of motile and interacting cells we derive a hydrodynamic equation for their density on a surface, where most of the kinetic coefficients are estimated from experimental data for N. gonorrhoeae bacteria. We use it to describe the formation of multiple colonies with sizes consistent with experimental observations. Finally, we show how the changes in the cell-to-cell interactions lead to the dissolution of the bacterial colonies. The successful application of kinetic theory to a complex far from equilibrium system such as formation and dissolution of living bacterial colonies potentially paves the way for the physical quantification of the initial stages of biofilm formation.
许多生物体在一段短暂的时间内形成菌落以抵御环境压力。细菌生物膜就是这种行为的一个典型例子。尽管各学科对此都有浓厚兴趣,但控制细菌菌落形成和解散的物理机制仍知之甚少。从对运动和相互作用细胞的动力学描述出发,我们推导出了一个关于它们在表面密度的流体动力学方程,其中大多数动力学系数是根据淋病奈瑟菌的实验数据估算的。我们用它来描述大小与实验观察结果一致的多个菌落的形成。最后,我们展示了细胞间相互作用的变化如何导致细菌菌落的解体。动力学理论在诸如活细菌菌落形成和解散这样一个复杂的远离平衡系统中的成功应用,可能为生物膜形成初始阶段的物理量化铺平道路。