Suppr超能文献

图上易感-感染-易感感染过程的存活时间。

Survival time of the susceptible-infected-susceptible infection process on a graph.

作者信息

van de Bovenkamp Ruud, Van Mieghem Piet

机构信息

Delft University of Technology, 2628 CD Delft, The Netherlands.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032806. doi: 10.1103/PhysRevE.92.032806. Epub 2015 Sep 15.

Abstract

The survival time T is the longest time that a virus, a meme, or a failure can propagate in a network. Using the hitting time of the absorbing state in an uniformized embedded Markov chain of the continuous-time susceptible-infected-susceptible (SIS) Markov process, we derive an exact expression for the average survival time E[T] of a virus in the complete graph K_{N} and the star graph K_{1,N-1}. By using the survival time, instead of the average fraction of infected nodes, we propose a new method to approximate the SIS epidemic threshold τ_{c} that, at least for K_{N} and K_{1,N-1}, correctly scales with the number of nodes N and that is superior to the epidemic threshold τ_{c}^{(1)}=1/λ_{1} of the N-intertwined mean-field approximation, where λ_{1} is the spectral radius of the adjacency matrix of the graph G. Although this new approximation of the epidemic threshold offers a more intuitive understanding of the SIS process, it remains difficult to compare outbreaks in different graph types. For example, the survival in an arbitrary graph seems upper bounded by the complete graph and lower bounded by the star graph as a function of the normalized effective infection rate τ/τ_{c}^{(1)}. However, when the average fraction of infected nodes is used as a basis for comparison, the virus will survive in the star graph longer than in any other graph, making the star graph the worst-case graph instead of the complete graph. Finally, in non-Markovian SIS, the distribution of the spreading attempts over the infectious period of a node influences the survival time, even if the expected number of spreading attempts during an infectious period (the non-Markovian equivalent of the effective infection rate) is kept constant. Both early and late infection attempts lead to shorter survival times. Interestingly, just as in Markovian SIS, the survival times appear to be exponentially distributed, regardless of the infection and curing time distributions.

摘要

存活时间(T)是病毒、模因或故障在网络中能够传播的最长时间。利用连续时间易感-感染-易感(SIS)马尔可夫过程的均匀化嵌入马尔可夫链中吸收状态的击中时间,我们推导出了完全图(K_N)和星图(K_{1,N - 1})中病毒平均存活时间(E[T])的精确表达式。通过使用存活时间,而非感染节点的平均比例,我们提出了一种新方法来近似SIS流行阈值(\tau_c),至少对于(K_N)和(K_{1,N - 1})而言,该阈值能随节点数量(N)正确缩放,并且优于(N)交织平均场近似的流行阈值(\tau_c^{(1)} = 1 / \lambda_1),其中(\lambda_1)是图(G)邻接矩阵的谱半径。尽管这种新的流行阈值近似为SIS过程提供了更直观的理解,但比较不同图类型中的疫情爆发仍然困难。例如,作为归一化有效感染率(\tau / \tau_c^{(1)})的函数,任意图中的存活似乎以上界为完全图、下界为星图。然而,当以感染节点的平均比例作为比较基础时,病毒在星图中的存活时间将比在任何其他图中更长,这使得星图成为最坏情况的图,而非完全图。最后,在非马尔可夫SIS中,节点感染期内传播尝试的分布会影响存活时间,即使感染期内传播尝试的预期数量(有效感染率的非马尔可夫等效量)保持不变。早期和晚期感染尝试都会导致较短的存活时间。有趣的是,正如在马尔可夫SIS中一样,无论感染和治愈时间分布如何,存活时间似乎都呈指数分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验