Cator E, Van Mieghem P
Faculty of Electrical Engineering, Mathematics and Computer Science, GA Delft, The Netherlands.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):056111. doi: 10.1103/PhysRevE.85.056111. Epub 2012 May 14.
Given the adjacency matrix A of a network, we present a second-order mean-field expansion that improves on the first-order N-intertwined susceptible-infected-susceptible (SIS) epidemic model. Unexpectedly, we found that, in contrast to first-order, second-order mean-field theory is not always possible: the network size N should be large enough. Under the assumption of large N, we show that the crucial and characterizing quantity, the SIS epidemic threshold τ(c), obeys an eigenvalue equation, more complex than the one in the first-order N-intertwined model. However, the resulting epidemic threshold is more accurate: τ(c)((2)) = τ(c)((1)) + O(τ(c)((1))/N), where the first-order epidemic threshold is τ(c)((1)) = 1/λ(1)(A) and where λ(1)(A) is the spectral radius of the adjacency matrix A.
给定一个网络的邻接矩阵(A),我们提出一种二阶平均场展开,它改进了一阶(N)交织易感-感染-易感(SIS)流行病模型。出乎意料的是,我们发现,与一阶情况不同,二阶平均场理论并非总是可行:网络规模(N)应足够大。在(N)很大的假设下,我们表明关键的特征量,即SIS流行病阈值(\tau(c)),服从一个特征值方程,该方程比一阶(N)交织模型中的方程更复杂。然而,由此得到的流行病阈值更精确:(\tau(c)^{(2)} = \tau(c)^{(1)} + O(\tau(c)^{(1)}/N)),其中一阶流行病阈值为(\tau(c)^{(1)} = 1/\lambda_1(A)),且(\lambda_1(A))是邻接矩阵(A)的谱半径。