Suppr超能文献

非马尔可夫感染传播极大地改变了网络中的易感染-感染-易感染传染病阈值。

Non-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks.

机构信息

Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, PO Box 5031, 2600 GA Delft, The Netherlands.

出版信息

Phys Rev Lett. 2013 Mar 8;110(10):108701. doi: 10.1103/PhysRevLett.110.108701. Epub 2013 Mar 5.

Abstract

Most studies on susceptible-infected-susceptible epidemics in networks implicitly assume Markovian behavior: the time to infect a direct neighbor is exponentially distributed. Much effort so far has been devoted to characterize and precisely compute the epidemic threshold in susceptible-infected-susceptible Markovian epidemics on networks. Here, we report the rather dramatic effect of a nonexponential infection time (while still assuming an exponential curing time) on the epidemic threshold by considering Weibullean infection times with the same mean, but different power exponent α. For three basic classes of graphs, the Erdős-Rényi random graph, scale-free graphs and lattices, the average steady-state fraction of infected nodes is simulated from which the epidemic threshold is deduced. For all graph classes, the epidemic threshold significantly increases with the power exponents α. Hence, real epidemics that violate the exponential or Markovian assumption can behave seriously differently than anticipated based on Markov theory.

摘要

大多数关于网络中易感-感染-易感传染病的研究都隐含地假设了马尔可夫行为:感染直接邻居的时间是指数分布的。到目前为止,已经投入了大量精力来描述和精确计算网络上易感-感染-易感马尔可夫传染病的传染病阈值。在这里,我们通过考虑具有相同均值但不同幂指数 α 的威布尔感染时间,报告了感染时间非指数(同时仍然假设治愈时间是指数)对传染病阈值的相当大的影响。对于三种基本类型的图,即 Erdős-Rényi 随机图、无标度图和晶格,从模拟的感染节点的平均稳态分数中推断出传染病阈值。对于所有图类,传染病阈值随着幂指数 α 的增加而显著增加。因此,违反指数或马尔可夫假设的实际传染病的行为可能与基于马尔可夫理论的预期严重不同。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验