Suppr超能文献

体感皮层中与触觉探索相关的神经元活动。

Neuronal activity in somatosensory cortex related to tactile exploration.

作者信息

Fortier-Poisson Pascal, Smith Allan M

机构信息

Groupe de Recherche sur le Système Nerveux Central, Département de Physiologie, Université de Montréal, Québec, Canada.

Groupe de Recherche sur le Système Nerveux Central, Département de Physiologie, Université de Montréal, Québec, Canada

出版信息

J Neurophysiol. 2016 Jan 1;115(1):112-26. doi: 10.1152/jn.00747.2014. Epub 2015 Oct 14.

Abstract

The very light contact forces (∼0.60 N) applied by the fingertips during tactile exploration reveal a clearly optimized sensorimotor strategy. To investigate the cortical mechanisms involved with this behavior, we recorded 230 neurons in the somatosensory cortex (S1), as two monkeys scanned different surfaces with the fingertips in search of a tactile target without visual feedback. During the exploration, the monkeys, like humans, carefully controlled the finger forces. High-friction surfaces offering greater tangential shear force resistance to the skin were associated with decreased normal contact forces. The activity of one group of neurons was modulated with either the normal or tangential force, with little or no influence from the orthogonal force component. A second group responded to kinetic friction or the ratio of tangential to normal forces rather than responding to a specific parameter, such as force magnitude or direction. A third group of S1 neurons appeared to respond to particular vectors of normal and tangential force on the skin. Although 45 neurons correlated with scanning speed, 32 were also modulated by finger forces, suggesting that forces on the finger should be considered as the primary parameter encoding the skin compliance and that finger speed is a secondary parameter that co-varies with finger forces. Neurons (102) were also tested with different textures, and the activity of 62 of these increased or decreased in relation to the surface friction.

摘要

在触觉探索过程中,指尖施加的非常轻的接触力(约0.60牛)揭示了一种明显优化的感觉运动策略。为了研究与这种行为相关的皮层机制,我们在两只猴子在没有视觉反馈的情况下用指尖扫描不同表面以寻找触觉目标时,记录了体感皮层(S1)中的230个神经元。在探索过程中,猴子像人类一样小心地控制着手指的力量。对皮肤提供更大切向剪切力阻力的高摩擦表面与正常接触力的降低有关。一组神经元的活动随法向力或切向力而调制,几乎不受正交力分量的影响。第二组对动摩擦或切向力与法向力的比值做出反应,而不是对诸如力的大小或方向等特定参数做出反应。第三组S1神经元似乎对皮肤上法向力和切向力的特定矢量做出反应。虽然有45个神经元与扫描速度相关,但其中32个也受手指力量的调制,这表明手指上的力应被视为编码皮肤顺应性的主要参数,而手指速度是与手指力量共同变化的次要参数。还用不同质地对102个神经元进行了测试,其中62个神经元 的活动随表面摩擦力增加或减少。

相似文献

1
Neuronal activity in somatosensory cortex related to tactile exploration.
J Neurophysiol. 2016 Jan 1;115(1):112-26. doi: 10.1152/jn.00747.2014. Epub 2015 Oct 14.
2
Correlation of fingertip shear force direction with somatosensory cortical activity in monkey.
J Neurophysiol. 2016 Jan 1;115(1):100-11. doi: 10.1152/jn.00749.2014. Epub 2015 Oct 14.
4
Deployment of fingertip forces in tactile exploration.
Exp Brain Res. 2002 Nov;147(2):209-18. doi: 10.1007/s00221-002-1240-4. Epub 2002 Sep 20.
5
Neuronal correlates of tactile speed in primary somatosensory cortex.
J Neurophysiol. 2013 Oct;110(7):1554-66. doi: 10.1152/jn.00675.2012. Epub 2013 Jul 10.
8
Role of friction and tangential force variation in the subjective scaling of tactile roughness.
Exp Brain Res. 2002 May;144(2):211-23. doi: 10.1007/s00221-002-1015-y. Epub 2002 Mar 22.
10
Phase Difference Between Normal and Shear Forces During Tactile Exploration Represents Textural Features.
IEEE Trans Haptics. 2020 Jan-Mar;13(1):11-17. doi: 10.1109/TOH.2019.2960021. Epub 2019 Dec 16.

引用本文的文献

1
Neural underpinnings of the interplay between actual touch and action imagination in social contexts.
Front Hum Neurosci. 2024 Jan 11;17:1274299. doi: 10.3389/fnhum.2023.1274299. eCollection 2023.
2
Neural dynamics of illusory tactile pulling sensations.
iScience. 2022 Aug 26;25(9):105018. doi: 10.1016/j.isci.2022.105018. eCollection 2022 Sep 16.
3
A Neural Network Model for Learning 3D Object Representations Through Haptic Exploration.
Front Neurorobot. 2021 Mar 25;15:639001. doi: 10.3389/fnbot.2021.639001. eCollection 2021.
4
Behavioral and Neural Bases of Tactile Shape Discrimination Learning in Head-Fixed Mice.
Neuron. 2020 Dec 9;108(5):953-967.e8. doi: 10.1016/j.neuron.2020.09.012. Epub 2020 Sep 30.
5
Neural Basis of Touch and Proprioception in Primate Cortex.
Compr Physiol. 2018 Sep 14;8(4):1575-1602. doi: 10.1002/cphy.c170033.
6
Correlation of fingertip shear force direction with somatosensory cortical activity in monkey.
J Neurophysiol. 2016 Jan 1;115(1):100-11. doi: 10.1152/jn.00749.2014. Epub 2015 Oct 14.

本文引用的文献

1
Edge-orientation processing in first-order tactile neurons.
Nat Neurosci. 2014 Oct;17(10):1404-9. doi: 10.1038/nn.3804. Epub 2014 Aug 31.
2
Spatio-temporal skin strain distributions evoke low variability spike responses in cuneate neurons.
J R Soc Interface. 2014 Jan 22;11(93):20131015. doi: 10.1098/rsif.2013.1015. Print 2014 Apr 6.
3
Effect of skin hydration on the dynamics of fingertip gripping contact.
J R Soc Interface. 2011 Nov 7;8(64):1574-83. doi: 10.1098/rsif.2011.0086. Epub 2011 Apr 13.
4
Neural mechanisms of tactile motion integration in somatosensory cortex.
Neuron. 2011 Feb 10;69(3):536-47. doi: 10.1016/j.neuron.2010.12.033.
5
Roughness of simulated surfaces examined with a haptic tool: effects of spatial period, friction, and resistance amplitude.
Exp Brain Res. 2010 Apr;202(1):33-43. doi: 10.1007/s00221-009-2105-x. Epub 2009 Dec 11.
6
Cutaneous afferents from the monkeys fingers: responses to tangential and normal forces.
J Neurophysiol. 2010 Feb;103(2):950-61. doi: 10.1152/jn.00502.2009. Epub 2009 Dec 2.
7
Slowly adapting mechanoreceptors in the borders of the human fingernail encode fingertip forces.
J Neurosci. 2009 Jul 22;29(29):9370-9. doi: 10.1523/JNEUROSCI.0143-09.2009.
8
Coding and use of tactile signals from the fingertips in object manipulation tasks.
Nat Rev Neurosci. 2009 May;10(5):345-59. doi: 10.1038/nrn2621. Epub 2009 Apr 8.
9
Tactile speed scaling: contributions of time and space.
J Neurophysiol. 2008 Mar;99(3):1422-34. doi: 10.1152/jn.01209.2007. Epub 2008 Jan 16.
10
A continuum mechanical model of mechanoreceptive afferent responses to indented spatial patterns.
J Neurophysiol. 2006 Jun;95(6):3852-64. doi: 10.1152/jn.01240.2005. Epub 2006 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验