Suppr超能文献

皮肤水合作用对指尖抓握接触动力学的影响。

Effect of skin hydration on the dynamics of fingertip gripping contact.

机构信息

Institute of Neuroscience (IoNS), Université catholique de Louvain, Brussels, Belgium.

出版信息

J R Soc Interface. 2011 Nov 7;8(64):1574-83. doi: 10.1098/rsif.2011.0086. Epub 2011 Apr 13.

Abstract

The dynamics of fingertip contact manifest themselves in the complex skin movements observed during the transition from a stuck state to a fully developed slip. While investigating this transition, we found that it depended on skin hydration. To quantify this dependency, we asked subjects to slide their index fingertip on a glass surface while keeping the normal component of the interaction force constant with the help of visual feedback. Skin deformation inside the contact region was imaged with an optical apparatus that allowed us to quantify the relative sizes of the slipping and sticking regions. The ratio of the stuck skin area to the total contact area decreased linearly from 1 to 0 when the tangential force component increased from 0 to a maximum. The slope of this relationship was inversely correlated to the normal force component. The skin hydration level dramatically affected the dynamics of the contact encapsulated in the course of evolution from sticking to slipping. The specific effect was to reduce the tendency of a contact to slip, regardless of the variations of the coefficient of friction. Since grips were more unstable under dry skin conditions, our results suggest that the nervous system responds to dry skin by exaggerated grip forces that cannot be simply explained by a change in the coefficient of friction.

摘要

指尖接触的动力学表现为从粘滞状态向完全滑动状态转变过程中观察到的复杂皮肤运动。在研究这种转变时,我们发现它取决于皮肤的水合作用。为了量化这种依赖性,我们要求被试者在玻璃表面上滑动食指,同时借助视觉反馈保持相互作用力的法向分量恒定。用光学仪器对接触区域内的皮肤变形进行成像,使我们能够定量确定滑动和粘滞区域的相对大小。当切向力分量从 0 增加到最大值时,粘滞皮肤区域与总接触区域的比值从 1 线性减小到 0。这种关系的斜率与法向力分量成反比。皮肤水合作用水平显著影响从粘滞到滑动接触的动力学过程。具体影响是降低接触滑动的趋势,而与摩擦系数的变化无关。由于在干燥皮肤条件下抓握更不稳定,因此我们的结果表明,神经系统通过过度的抓握力来应对干燥的皮肤,而这种力不能简单地用摩擦系数的变化来解释。

相似文献

1
Effect of skin hydration on the dynamics of fingertip gripping contact.
J R Soc Interface. 2011 Nov 7;8(64):1574-83. doi: 10.1098/rsif.2011.0086. Epub 2011 Apr 13.
2
Perception of partial slips under tangential loading of the fingertip.
Sci Rep. 2018 May 4;8(1):7032. doi: 10.1038/s41598-018-25226-w.
3
Why pens have rubbery grips.
Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):10864-10869. doi: 10.1073/pnas.1706233114. Epub 2017 Sep 25.
4
Role of arm reaching movement kinematics in friction perception at initial contact with smooth surfaces.
J Physiol. 2024 May;602(9):2089-2106. doi: 10.1113/JP286027. Epub 2024 Mar 28.
6
Deployment of fingertip forces in tactile exploration.
Exp Brain Res. 2002 Nov;147(2):209-18. doi: 10.1007/s00221-002-1240-4. Epub 2002 Sep 20.
7
Finger pad friction and its role in grip and touch.
J R Soc Interface. 2012 Dec 19;10(80):20120467. doi: 10.1098/rsif.2012.0467. Print 2013 Mar 6.
8
Simple and Reliable Method to Estimate the Fingertip Static Coefficient of Friction in Precision Grip.
IEEE Trans Haptics. 2016 Oct-Dec;9(4):492-498. doi: 10.1109/TOH.2016.2609921. Epub 2016 Nov 2.
10
A continuous measure of fingertip friction during precision grip.
J Neurosci Methods. 2009 May 15;179(2):224-9. doi: 10.1016/j.jneumeth.2009.01.031. Epub 2009 Feb 7.

引用本文的文献

2
Fast grip force adaptation to friction relies on localized fingerpad strains.
Sci Adv. 2024 Jan 19;10(3):eadh9344. doi: 10.1126/sciadv.adh9344. Epub 2024 Jan 17.
3
Open-Source Instrumented Object to Study Dexterous Object Manipulation.
eNeuro. 2024 Jan 17;11(1). doi: 10.1523/ENEURO.0211-23.2023. Print 2024 Jan.
5
How Tactile Afferents in the Human Fingerpad Encode Tangential Torques Associated with Manipulation: Are Monkeys Better than Us?
J Neurosci. 2023 May 31;43(22):4033-4046. doi: 10.1523/JNEUROSCI.1305-22.2023. Epub 2023 May 4.
6
Biomechanics of the finger pad in response to torsion.
J R Soc Interface. 2023 Apr;20(201):20220809. doi: 10.1098/rsif.2022.0809. Epub 2023 Apr 19.
7
Efficient tactile encoding of object slippage.
Sci Rep. 2022 Aug 1;12(1):13192. doi: 10.1038/s41598-022-16938-1.
8
Contact evolution of dry and hydrated fingertips at initial touch.
PLoS One. 2022 Jul 13;17(7):e0269722. doi: 10.1371/journal.pone.0269722. eCollection 2022.
9
10
From Affordances to Abstract Words: The Flexibility of Sensorimotor Grounding.
Brain Sci. 2021 Sep 30;11(10):1304. doi: 10.3390/brainsci11101304.

本文引用的文献

1
Fingertip moisture is optimally modulated during object manipulation.
J Neurophysiol. 2010 Jan;103(1):402-8. doi: 10.1152/jn.00901.2009. Epub 2009 Nov 11.
2
Fingerprints are unlikely to increase the friction of primate fingerpads.
J Exp Biol. 2009 Jul;212(Pt 13):2016-22. doi: 10.1242/jeb.028977.
4
A continuous measure of fingertip friction during precision grip.
J Neurosci Methods. 2009 May 15;179(2):224-9. doi: 10.1016/j.jneumeth.2009.01.031. Epub 2009 Feb 7.
5
Coding and use of tactile signals from the fingertips in object manipulation tasks.
Nat Rev Neurosci. 2009 May;10(5):345-59. doi: 10.1038/nrn2621. Epub 2009 Apr 8.
6
Moisture Evaluator: a direct measure of fingertip skin hydration during object manipulation.
Skin Res Technol. 2008 Nov;14(4):385-9. doi: 10.1111/j.1600-0846.2008.00314.x.
7
Bio-inspired sensorization of a biomechatronic robot hand for the grasp-and-lift task.
Brain Res Bull. 2008 Apr 15;75(6):785-95. doi: 10.1016/j.brainresbull.2008.01.017. Epub 2008 Feb 20.
8
Influence of epidermal hydration on the friction of human skin against textiles.
J R Soc Interface. 2008 Nov 6;5(28):1317-28. doi: 10.1098/rsif.2008.0034.
9
In vivo biomechanics of the fingerpad skin under local tangential traction.
J Biomech. 2007;40(4):851-60. doi: 10.1016/j.jbiomech.2006.03.004. Epub 2006 May 8.
10
Viscoelastic response of the finger pad to incremental tangential displacements.
J Biomech. 2005 Jul;38(7):1441-9. doi: 10.1016/j.jbiomech.2004.07.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验