Tuček Jiří, Machala Libor, Ono Shigeaki, Namai Asuka, Yoshikiyo Marie, Imoto Kenta, Tokoro Hiroko, Ohkoshi Shin-ichi, Zbořil Radek
Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
Research and Development Center for Ocean Drilling Science, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061, Japan.
Sci Rep. 2015 Oct 15;5:15091. doi: 10.1038/srep15091.
Iron(III) oxide shows a polymorphism, characteristic of existence of phases with the same chemical composition but distinct crystal structures and, hence, physical properties. Four crystalline phases of iron(III) oxide have previously been identified: α-Fe2O3 (hematite), β-Fe2O3, γ-Fe2O3 (maghemite), and ε-Fe2O3. All four iron(III) oxide phases easily undergo various phase transformations in response to heating or pressure treatment, usually forming hexagonal α-Fe2O3, which is the most thermodynamically stable Fe2O3 polymorph under ambient conditions. Here, from synchrotron X-ray diffraction experiments, we report the formation of a new iron(III) oxide polymorph that we have termed ζ-Fe2O3 and which evolved during pressure treatment of cubic β-Fe2O3 (Ia3 space group) at pressures above 30 GPa. Importantly, ζ-Fe2O3 is maintained after pressure release and represents the first monoclinic Fe2O3 polymorph (I2/a space group) that is stable at atmospheric pressure and room temperature. ζ-Fe2O3 behaves as an antiferromagnet with a Néel transition temperature of ~69 K. The complex mechanism of pressure-induced transformation of β-Fe2O3, involving also the formation of Rh2O3-II-type Fe2O3 and post-perovskite-Fe2O3 structure, is suggested and discussed with respect to a bimodal size distribution of precursor nanoparticles.
氧化铁(III)呈现出多晶型现象,其特征是具有相同化学成分但晶体结构不同,因而物理性质也不同的相的存在。此前已鉴定出氧化铁(III)的四种晶相:α-Fe₂O₃(赤铁矿)、β-Fe₂O₃、γ-Fe₂O₃(磁赤铁矿)和ε-Fe₂O₃。这四种氧化铁(III)相在加热或压力处理时都容易发生各种相变,通常会形成六方晶系的α-Fe₂O₃,它是在环境条件下热力学最稳定的Fe₂O₃多晶型物。在此,通过同步加速器X射线衍射实验,我们报告了一种新的氧化铁(III)多晶型物的形成,我们将其命名为ζ-Fe₂O₃,它是在压力高于30 GPa时对立方β-Fe₂O₃(Ia3空间群)进行压力处理过程中形成的。重要的是,ζ-Fe₂O₃在压力释放后仍能保持,并且是第一种在大气压力和室温下稳定的单斜晶系Fe₂O₃多晶型物(I2/a空间群)。ζ-Fe₂O₃表现为反铁磁体,奈尔转变温度约为69 K。本文针对前驱体纳米颗粒的双峰尺寸分布,提出并讨论了β-Fe₂O₃压力诱导转变的复杂机制,其中还涉及Rh₂O₃-II型Fe₂O₃和后钙钛矿-Fe₂O₃结构的形成。